AD-4412-CW Weighing Indicator

CONNECTION SETTING EXAMPLE

1WMPD4004155

© 2020 A&D Company, Limited. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, or translated into any language in any form by any means without the written permission of A&D Company, Limited.

The contents of this manual and the specifications of the instrument covered by this manual are subject to change for improvement without notice.

This section shows descriptions from connection to basic settings for using the AD-4412-CW as a weight checker.

Setting flow

Instruction manual

" shows the instruction manual section referenced..

1. Connecting

.1. Connecting to the indicator

The following describes how to connect the indicator to the load cell. Follow the procedure below for the indicator connection.

- Connect the load cell cable to the "LOAD CELL" terminal (Fig. 2), the indicator's power cable to the "AC IN" terminal (Fig. 3), both located on the rear panel of the indicator. (Refer to "3.4. Connecting Load Cell Cables" and "3.5. Connecting Power Lines" in the instruction manual.)
- 2. When using the photo eye sensor, connect it to the "I/F" terminal on the rear panel of the indicator. (Refer to "Connection of Photo eye Sensor" of "11. Interface" in the instruction manual.)

Fig. 1 Rear panel

	AD-4412-	CW		6-wire shielded load cell cable	Loa	d cell
		ELL				
\triangleleft		1	EXC+	Positive power supply to load cell	EXC+	
H		2	SEN+	Positive sense input		NN M
\square		3	SEN-	Negative sense input		
		4	EXC-	Negative power supply to load cell $\$	EXC-	
		5	SIG+	Positive input from load cell	SIG+	
		6	SIG-	Negative input from load cell	SIG-	
		7	SHLD	Shield		
				~ •	L	

Usable Compression Terminal Parts (M3)

Fig. 2 Standard connection method for load cell (6-wire)

1.2. Connecting the external equipment

This section describes the specifications and connection examples for control I/O.

Control I/O specifications

Control I/O has DO11 points, DI11 points, and the following specifications.

Table 1	Control I/O	Interface s	pecifications

Input circuit (DI) method	Non-voltage input/open collector drive
Input terminal open valtage	7 to 11 V
Input circuit drive current	5 mA (max.)
Max. residual voltage	2V (max.)
Output circuit (DO) method	Open collector
Output circuit withstand	DC 40 V
voltage	
Max. drive current	50 mA
Output terminal residual	1.5 V (at drive current 50 mA)
voltage	

Connecting the control I/O

Refer to the following figure for connecting the control I/O.

Fig. 4 Input and output circuit of control I/O

Fig. 5 Terminal numbers of control I/O connector

Input terminal	DI number	Output terminal	DO number
A1	DI 1	B1	DO 1
A2	DI 2	B2	DO 2
A3	DI 3	B3	DO 3
A4	DI 4	B4	DO 4
A5	DI 5	B5	DO 5
A6	DI 6	B6	DO 6
A7	DI 7	B7	DO 7
A8	DI 8	B8	DO 8
A9	DI 9	B9	DO 9
A10	DI 10	B10	DO 10
A11	DI 11	B11	DO 11
A12	(input common)	B12	(output common)

Table 2 Correspondence table of control I/O and DI/DO

* Optional OP-02 Relay output and OP-05 parallel I/O can be installed in the indicator for a total of up to two units. However, corresponding numbers for the DI/DO vary depending on the slot installed to.

Installing the OP-02 Relay output into optional slot 1 allows use of DO12 to DO20. Installing the OP-02 Relay output into optional slot 2 allows use of DO28 to DO36. (Refer to "11.5. OP - 02 Relay output" in the instruction manual for details.)

Table 3 Correspondence table of OP-02 and DO

Outout	terminal	DO number	DO number	
Ouipui	lenninai	(optional slot 1)	(optional slot 2)	
	1	DO 12	DO 28	
1ch	2	DO 13	DO 29	
	3	DO 14	DO 30	
	4	DO 15	DO 31	
	5	DO 16	DO 32	
	6	(output common)	(output common)	
	7	DO 17	DO 33	
2ch	8	DO 18	DO 34	
	9	DO 19	DO 35	
	10	DO 20	DO 36	
	11	(output common)	(output common)	

Screw hole When installing the OP-02 to the indicator, be sure that the screws are firmly tightened.

Fig 1 OP-02 connector terminal

Installing the OP-05 Parallel I/O to optional slot 1 allows use of DI12 to DI27 and DO12 to DO27. Installing the OP-05 Parallel I/O to optional slot 2 allows use of DI28 to DI43 and DO28 to DO43.

(Refer to "11.6. OP - 05 Parallel Input/Output" in the instruction manual for details.)

Fig 2 OP-05 Connector terminal number

Table 4	Correspondence table of OP-05 and DI/DO
---------	---

Input	DI number	DI number	Output	DO number	DO number
terminal	(optional slot 1)	(optional slot 2)	terminal	(optional slot 1)	(optional slot 2)
A1	DI 12	DI 28	B1	DO 12	DO 28
A2	DI 13	DI 29	B2	DO 13	DO 29
A3	DI 14	DI 30	B3	DO 14	DO 30
<u>A4</u>	DI 15		B4	DO 15	
Ats		DI 40	BTJ		DO 40
A14	DI 25	DI 41	B14	DO 25	DO 41
A15	DI 26	DI 42	B15	DO 26	DO 42
A16	DI 27	DI 43	B16	DO 27	DO 43
A17	(input common)	(input common)	B17	(output common)	(output common)
A18	(input common)	(input common)	B18	(output common)	(output common)
A19	(input common)	(input common)	B19	(output common)	(output common)
A20	(FG)	(FG)	B20	(FG)	(FG)

Connection example

The following shows a general connection example for the indicator. The following settings are described based on this example.

Othrer specifications

- Scale weighing capacity: 1000 g
- Conveyer length : 300 mm
- Conveyer speed : 80 m/min

2. Setting the indicator

By changing the factory settings for the indicator, it can be changed to have the appropriate settings for your scale. The parameters set are maintained in the memory even after shutting down the power of the indicator until the indicator is initialized or those settings are changed. The following settings require quality manager or higher permissions. (Refer to "5.5 Managing User Level for Logging In" of the instruction manual for setting the management level.)

2.1. Weighing unit, decimal point position and division

1. Touch the Setting key on the weighing screen to display the setting screen.

2019/05	6/17 15:59	No: 01	-001 U	ser:Adminst	rator	USB
Balance	System 1	System 2	Connect			
\subset	Weighing			Cal	\supset	
						Ð

Fig. 9 Setting screen

2. Touch the Weighing button on "Balance" tab and set the weighing unit, decimal point position and division for weighing products into the each field on "Weighing Setting 1" tab.

2018/09/14 07:2	8 No: 0	1-001	User:Adn	ninstra	ator	
Weighing Setting1	Weighing	Setting2				
Unit		g			÷	
Decimal Pc	int	0.0			÷	
Division		1			÷	
Capacity	1		2000.0	g		
Digital Filter(S	itatic)	7Hz			÷	
						P

Fig. 10 Setting the weighing unit, decimal point position and division

2.2. Weighing capacity

1. Touch the Setting key on the weighing screen to display the setting screen.

Fig. 11 Setting screen

2. Touch the Weighing button on the "Balance" tab and enter an appropriate capacity (rated capacity) for your load cell into the field "Capacity" on the "Weighing Setting 1" tab. (Example below is when the 1000 g is entered as capacity.)

2018/09/14 07:28	No: 01-	001 Use	r:Admins	strator	
Weighing Setting1	Veighing Se	etting2			
Unit	g			¢	
Decimal Poin	t 0.	.0		÷	
Division	1			¢	
Capacity		100	0.0	g	
Digital Filter(Sta	tic) 7	Hz		¢	
					P

Fig. 12 Setting the capacity

2.3. Adjusting the weight

1. Touch the Setting key on the weighing screen to display the setting screen.

Fig. 13 Setting screen

2. Touch the Cal button on the "Balance" tab to display the weight adjustment screen.

2019/08/21 15	5:22 No: 01-001	User:Adminstrator	USB
		0.0 §	5
Weight	1000.0 g		
Zero Point	0.122293 mV/V	V Adjust Cal	合
Span	0.527880 mV/V	V	P

Fig. 14 Weight adjustment screen

3. Touch the Adjust Cal button to calibrate the zero point. Touch the OK button after confirming that nothing is placed on the load cell. To proceed to span calibration in the next step without calibrating the zero point, touch the Cancel button

	Zero point calibration					
С	alibrating th	ne zero point?				
		0.0 g				
ОК	Cancel					

Fig. 15 Zero point calibration

4. The "Weight value enter" screen is displayed after finishing zero point calibration. Enter a mass for the weight to be used for calibration. (The weight value can be set between 0 g and capacity (g) of the load cell.)

Fig. 16 Weight value enter screen

5. The "Span calibration" screen is displayed after you have finished entering the weight value. Place a weight of the mass entered on the load cell. Wait until the numerical value is stabilized, and then perform the span calibration.

Fig. 17 Span calibration screen

2.4. Conveyer length

By changing the factory settings for the indicator connected to the weight checker, settings can be changed to those appropriate for your weight checker. The parameters set are maintained in the memory even after shutting down the power of the indicator until the indicator is initialized or those settings are changed. The following settings require quality manager or higher permissions.

1. Touch the Setting key on the weighing screen to display the setting screen.

Fig. 18 Setting screen

2. Touch the Main Unit button on the "System 1" tab to display the main unit setting screen.

Fig. 19 System setting screen

3. Set the length for your conveyer in the field "Conveyer Length" on the "Main Unit 1" tab. (The indicator must be restarted to enable those settings.)

2018/10/15 12:07 No: 01-001 User:Adminstrator						
Main Unit1 Main Unit2			_			
Identification Name	AD-4412-CW					
Startup User Level	Administrator					
Conveyer Length	300	mm				
Unsplit Range	20	%				
Conveyor Mode	Disable	¢				
Connect Device Priority	Disable	÷	P			

Fig. 20 Setting the conveyer length

2.5. Photo eye sensor

Setting the photo eye sensor

1. After connecting the photo eye sensor to the I/F terminal, touch the Setting key on weighing screen to display the setting screen. Touch the Main Unit button on "System 1" tab to display main unit setting screen.

2019/05/17 15:59 No: 01-001 User:Adminstrator	2018/10/17 3:02 No: 01-001 User:Adminstrator
Balance System 1 System 2 Connect	Balance System 1 System 2 Connect
Weighing Cal	Main Unit Display DI Connection DI Indicator

Fig. 21 Setting screen / System 1 screen

2. Set the "Curb Chattering", "Photo Eye Sensor Polarity" and "Photo Eye Sensor Timeout" on the "Main Unit 2" tab.

2018/10/15 12 <mark>:17</mark> No: C	1-001 User:Ma	intenance	
Main Unit1 Main Unit2			
Curb Chattering	0.05	sec	
Photo Eye Sensor Polarity	Positive Logic	÷	
Photo Eye Sensor Timeout	30.00	sec	
Random Check	Disable	÷	
			P

Fig. 22 Setting the photo eye sensor

3. Settings for products

When using the indicator as weight checker, it requires settings according to the type of products to be conveyed in order to detect and reject properly.

The parameters set are maintained in the memory even after shutting down the power of the indicator until the indicator is initialized or those settings are changed. The following settings require quality manager or higher permissions.

3.1. Speed

1. Touch the Product key on weighing screen to display the product screen.

2018/09/14 07:29 No: 01-001 User:Adminstrator								
001		002						
	NO IMAGE		Unregistered					
0.0 g		0.0 g						
003		004						
	Unregistered		Unregistered					
0.0 g		0.0 g						
1	1 Read Ec		2					

Fig. 23 Product screen

2. Touch the Edit key on the product screen to display the product edit screen.

Fig. 24 Product edit screen

3. Touch the Detect Parameter button on the "Detect Function" tab to display the weighing parameter setting screen.

Fig. 25 Detect parameter setting screen

4. Enter an appropriate speed for your belt conveyor in the field "Speed" on the "Weighing Parameter Setting 1" tab. (The speed for the belt conveyor must be calibrated beforehand.)

2019/05/17 15:32 No: 0	1-001 User:Adr	minstrato	r USB
Weighing Parameter Setting1	Weighing Parameter	er Settii 🕯	
Product Length	80	mm	
Speed	80.0	m/min	
Weighing Mode	Passing Weighing	÷	
Conveyor Stop Timer	0.0	sec	
Product Detection	Photo Sensor	÷	
	0.00	~	

Fig. 26 Selecting the speed

3.2. Product length

1. Display the product edit screen in the same way as "3.1. Speed" described previously, and then touch the Detect Parameter button on the "Detect Function" tab to display the weighing parameter setting screen.

Fig. 27 Detect parameter setting screen

2. Set an appropriate length for products to be conveyed in the field "Product Length" on the "Weighing Parameter Setting 1" tab.

The product length is used for continuous unsplit detection. (Setting it to a value longer or shorter than the products to be conveyed may cause a detecton error.)

2019/05/17 15:32 No: 0	1-001 User:Adı	minstrator	USB
Weighing Parameter Setting1	Weighing Paramet	er Settir 🖣	
Product Length	80	mm	
Speed	80.0	m/min	
Weighing Mode	Passing Weighing	\$	
Conveyor Stop Timer	0.0	sec	
Product Detection	Photo Sensor	\$	
Near Zero Range	0.00	g	P

Fig. 28 Setting the product length

3.3. Detect basis

 Display the product edit screen in the same way as "3.1. Speed" described previously, and then touch the Detect Basis button on "Detect Function" tab to display the detect basis setting screen.

2018	8/10/1	No: 01-001 User:Maintenance	
Edit	Detect Function	Control Revision	
C	Detect Basis	Detect Parameter	
C	DO	Statistical	

Fig. 29 Detect basis setting screen

2. By setting "Target", "Hi Limit" and "Lo Limit" on the "Detect Basis Setting 1" tab, the indicator detects weighing values that exceed the upper limit (Hi Limit) as being overweight and weighing values below the lower limit as being underweight.

(When setting the reject stage to stage 5, the upper-upper limit (Hi Hi Limit) value detects very overweight and lowerlower limit (Lo Lo Limit) detects very underweight by adding upper-upper limit and lower-lower limit to those settings.) Those detections can also be used as output conditions of the DO/DI. Refer to "3.4 Setting the DI/DO" for details of the setting method.

2019/05/17 15:32	No: 0	1-001	User:/	Admi	instra	tor		USB
Detect Basis Setting1	Detect	Basis Set	ting2					
Reject Stage		3 Stage				¢		
Target			0.0	00	g			
Hi Hi Limit			0.0	0	g			
Hi Limit			0.0	00	g			
Lo Limit			0.0	00	g		Ĺ	Ù
Lo Lo Limit			0.0	0	g		k	D

Fig. 30 Detect basis settings

3. Refer to "5.7. Summary of Weighing Result" in the instruction manual for details of summary of weighing results using the detect basis described above.

3.4. Setting the DO/DI

Setting the DO is described using the connection example shown in "1.2. Connecting the external equipment". The example below is when an output to the conveyer is set to DO1 and an output to the tower light is set to DO2. (DO number is a number set by yourself at connection.)

Fig. 31 Connection example

Setting the DO

1. Touch the Product key on the weighing screen to display the product screen. Then, touch the Edit key on the product screen to display the product edit screen.

Fig. 32 Product screen / Product edit screen

2. Touch the DO button on the "Detect Function" tab to display the DO setting screen.

Fig. 33 DO selection screen

3. Touch the DO Map button to display the DO map screen.

2018/0	09/14 07:08	No: 01-001	User:Adminstrato	r
DO				
C	DO Мар	$\supset \subset$	Control I/O	
				冷
				Þ

Fig. 34 DO seting screen

4. The example is when "O" is placed in the field "Belt Running" for "DO1" to operate the belt conveyer while weighing.
"O" is placed in the field "HiHi" and "LoLo" for "DO2" to reject products using the rejecter at upper-upper (HiHi) detection or lower-lower (LoLo) detection.

Fig. 35 Setting the DO1 / Setting the DO2

5. Return to the DO setting screen and touch the AD-4412-CW button to display the DO operation setting screen.

Fig. 36 DO setting screen

6. In this example, DO does not need to be set for the belt conveyor and tower light. However, when using a flipper, etc, set the delay time as "the time until the weighing product reaches the rejecter after detecting it at the end of the conveyer" plus "the swing time for the flipper of the rejecter".

(However, the swing time for the flipper of the rejecter varies depending on settings for the cushion needle of the air cylinder. So, fine adjustment is required for it.)

2	018/10/15 12:16	No: 01	-001 U	ser:Mainte	nance	
		DO	01			
	Behavior		Time		¢	
l	Delay Time			0.10	sec	
l	Hold Time			0.05	sec	
	Polarity		Positive Lo	ogic	¢	
Ľ	ОК					
	DO3	0.00	sec	0.00	sec	Þ

Fig. 37 DO2 operation setting screen

7. Hold time is the time to output the signal. There is a possibility that a jitter of about 50msec is generated at the hold time. So, it must be set with sufficient leeway.

If DI connection is made for other external equipment, see "9.13. DI (Digital Input)" in the instruction manual.

3.5. For additional usage

This application note shows descriptions from connecting the indicator to basic setting. Since those descriptions are only for basic connection methods and functions, the indicator can also be practially used by adding functions or options not described in this document, such as providing feedback to the packing machine or charging machine ("9.10. Feedback Control (FC)" in the instruction manual). Refer to the instruction manual for details of descriptions.