AD-4A12-CW AD-4413-CW

Weighing Indicator

WARNING DEFINITIONS

The warnings described in this manual have the following meanings:

\!WARNING	A potentially hazardous situation which, if not avoided, could result in death or serious injury.
¢CAUTION	A potentially hazardous situation which, if not avoided, may result in minor or moderate injury or damage to the instrument.
4	This symbol indicates caution against electrical shock. Do not touch the part where the symbol is placed.
(1)	This symbol indicates the ground terminal.
S	This symbol indicates that an operation is prohibited.
Note	Information or cautions to use the device correctly.

(C) 2019 A\&D Company, Limited. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, or translated into any language in any form by any means without the written permission of A\&D Company, Limited.

The contents of this manual and the specifications of the instrument covered by this manual are subject to change for improvement without notice.

Windows is registered trademarks of Microsoft Corporation.
Modbus protocol is is registered trademarks of Modicon Inc.
Other trademarks and trade names are those of their respective owners.

Contents

1. Introduction 9
1.1. Features 9
1.2. Safety Precautions 10
1.3. Compliance 11
2. Parts Names 12
2.1. Front Panel 12
2.2. Rear Panel 13
3. Installing the Weighing Indicator 14
3.1. USB Flash Drive 14
3.1.1. \quad Connecting USB Flash Drive 14
3.1.2. Removing USB Flash Drive 14
3.2. Installing Option board 15
3.3. Mounting the Weighing Indicator on Panel 15
3.3.1. Panel Mount Kit (AD-4412-10) 16
3.3.2. Attachment Kit (AD-4412-11) for Indicator Stand (AD-4402-25) 17
3.4. Connecting Load Cell Cables 18
3.5. Connecting Power Lines 19
4. Operation Window 20
4.1. Icon 20
4.2. Numerical Input 20
4.3. Pull Down Menu 21
4.4. IP Address 21
4.5. Alphanumeric Input 22
4.6. Password Input 22
5. Basic Operations 23
5.1. Operation Outline 23
5.2. Turning on the Power 24
5.3. Turning off the Power 24
5.4. Weighing Operations 25
5.4.1. Changing the Indication of weighing Value 25
5.4.2. Adjusting Zero point (to Display Zero) 26
5.4.3. Starting and Stopping the Weighing Operation 26
5.5. Managing User level for Logging in 27
5.5.1. Management level of User 27
5.5.2. Changing User 28
5.5.3. Registering User 29
5.5.4. Changing User Information 30
5.5.5. Deleting User 31
5.6. Selection of Products and Detection Function 33
5.6.1. Registering Products 33
5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit) 35
5.6.3. Setting Product Length and Velocity. 36
5.6.4. \quad Setting the Digital Output (DO) 37
5.6.5. Setting the Delay Time and Holding Time 38
AD-4412-CW, AD-4413-CW 3
5.6.6. DO Test Function 39
5.6.7. Setting a Tare Value 39
5.6.8. The Selection of Weighing Product 40
5.6.9. The Registration of Product Image 40
5.6.10. Creating a Copy of Product Settings 41
5.6.11. Deleting Product Settings 42
5.7. Summary of Weighing Result 43
5.7.1. Weighing History 43
5.7.2. All Summary 44
5.7.3. OK Summary 44
5.7.4. Number of Samples Summary 45
5.7.5. Number of OK Samples Summary 46
5.7.6. Histogram 47
5.7.7. \bar{X} Control Chart 48
5.7.8. $\quad R$ Control Chart. 49
6. Adjustment Operations for the Indicator 50
6.1. Calibrating the Indicator using a Weight. 50
6.2. Settings for Date and Time 52
6.3. Setting up LAN interface 53
7. Output of Weighing Results and Summary 54
7.1. Output to USB Flash Drive 54
7.1.1. Output of Weighing History 54
7.1.2. Example: Output File of Weighing History 55
7.1.3. PDF output of Histogram, Control Chart and Summary 56
7.2. Output to the Postscript Printer 57
7.2.1. Output to Postscript Printer 57
7.2.2. Printing Sample of Histogram 58
7.2.3. Print Sample of Control Chart 59
7.2.4. Print Sample of Summary 60
7.3. Output to the Dump Printer 61
7.3.1. Output to the Dump Printer 61
7.3.2. Print Samples 62
8. Peripherals 66
8.1. Format of USB Flash Drive 66
8.2. Connecting the LAN interface 67
8.2.1. How to Connect to Network Using Wired LAN 67
8.2.2. How to Connect to Network Using Wireless LAN 67
8.3. Connecting the PostScript Printer 68
8.4. Remote Monitor 68
8.5. Replacing Product Using Serial Communication 69
9. The Details of Settings 70
9.1. Product Name and Product Code 74
9.1.1. Product Name 74
9.1.2. Product Code 74
9.2. Detect Basis 74
9.2.1. Reject Stage (Count of Separation). 74
9.2.2. Target 74
9.2.3. HiHi Limit 74
9.2.4 Hi Limit 74
9.2.5. Lo Limit 75
9.2.6. LoLo Limit 75
9.2.7. Over Weight Exception 75
9.2.8. Consecutive Fail Stop 75
9.2.9. Consecutive Fail Num 75
9.3. Detect Parameter 76
9.3.1. Product Length 76
9.3.2. Speed 76
9.3.3. Weighing Mode 76
9.3.4. Conveyor Stop Timer. 76
9.3.5. Product Detection 77
9.3.6. Near Zero Range 77
9.3.7. Auto Mode (to Set Parameters) 77
9.4. DO Map (Digital Output Map) 78
9.4.1. DO Map Reference 78
9.4.2. Output Definition of DO Map 78
9.5. Control I/O (Part of Digital Output) 81
9.5.1. DO Behavior 81
9.5.2. Delay Time 81
9.5.3. Hold Time 81
9.5.4. Polarity 81
9.6. Statistics 82
9.6.1. Num of Samples 82
9.6.2. Sub Samples 82
9.6.3. \bar{X} 82
9.6.4. $\quad R$ 82
9.6.5. Width of Section 82
9.7. Tare 83
9.8. Auto Zero. 83
9.8.1. Auto Zero Range 83
9.8.2. Dead Zone Timer 83
9.8.3. Observation Timer 84
9.8.4. Averaging Time 84
9.8.5. Auto Zero Sample 84
9.8.6. Coe (Coefficient) 84
9.9. D. Comp. Value 84
9.10. Feedback Control (FC) 85
9.10.1. Feedback Control Target 86
9.10.2. Feedback Control Range 86
9.10.3. Feedback Control Step : [g/sec.] or [sec./g] 86
9.10.4. Feedback Control Sample 86
9.10.5. Feedback Control Waiting Time 86
9.11. Step Control 87
9.11.1. Control Target 87
9.11.2. Zone 1 to 4 of 10 Stage Control 88
9.11.3. 10 C Sample 88
9.11.4. 10 C Wait Time 88
9.12. Weighing 89
9.12.1. Unit 89
9.12.2. Decimal Point 89
9.12.3. Division 89
9.12.4. Capacity 89
9.12.5. Digital Filter 89
9.12.6. Zero Point Range 89
9.12.7. Power on Auto Zero Range 89
9.12.8. Zero Tracking Time 90
9.12.9. Zero Tracking Weight. 90
9.12.10. Stability Time 90
9.12.11. Stability Weight 90
9.13. Cal (Calibration) 91
9.13.1. Weight 91
9.13.2. Zero Point 91
9.13.3. Span 91
9.14. Main Unit 92
9.14.1. Identification Name 92
9.14.2. Start up User Level 92
9.14.3. Conveyor Length 92
9.14.4. Unsplit Range 92
9.14.5. Conveyor Mode 92
9.14.6. Connect Device Priority 92
9.14.7. Curb Chattering 93
9.14.8. Photo Eye Sensor Polarity 93
9.14.9. Photo Eye Sensor Timeout 93
9.14.10. Random Check (To input data previously) 93
9.15. Display 94
9.15.1. Language 94
9.15.2. Display Mode 94
9.15.3. Negative Weight 94
9.15.4. Display Data 94
9.15.5. Standby Mode 94
9.15.6. Brightness 94
9.16. Connection 94
9.16.1. Printer IP Address 94
9.17. DI Map (Digital Input Map) 95
9.18. Control I/O (Part of Digital Input) 95
9.18.1. Input Trigger 96
9.18.2. Configuration 98
9.18.3. Delay Time 101
9.18.4. Chattering 101
9.19. DI Indicator 102
9.20. Analog Out 103
9.20.1. Data Types 103
9.20.2. Output Format 103
9.20.3. Low Voltage Standard 103
9.20.4. High Voltage Standard 103
9.20.5. Low Voltage Output 103
9.20.6. High Voltage Output 103
9.20.7. Low Current Standard 103
9.20.8. High Current Standard 103
9.20.9. Low Current Output 103
9.20.10. High Current Output 103
9.21. Device 104
9.21.1. Model Name 104
9.21.2. Serial Number 104
9.21.3. GUI Software Version 104
9.21.4. Weighing Software Version 104
9.21.5. Option Port 1 and 2 104
9.22. Date / Time 104
9.22.1. Date Set 104
9.22.2. Time Set 104
9.23. USB Flash Drive 104
9.23.1. USB Operation History 104
9.23.2. USB Weighing History 104
9.24. Modbus 105
9.24.1. Modbus 105
9.24.2. Slave Address 105
9.25. Output Format 106
9.26. RS-232C 108
9.26.1. RS-232C Port 108
9.26.2. Output Mode 108
9.26.3. Baud Rate 108
9.26.4. Parity 108
9.26.5. Stop Bit 108
9.26.6. Data Bit 109
9.27. RS-485 109
9.27.1. RS-485 Port 109
9.27.2. Output Mode 109
9.27.3. Baud Rate 109
9.27.4. Parity 109
9.27.5. Stop Bit 109
9.27.6. Data Bit 109
9.28. LAN 110
9.28.1. CL IP Address 110
9.28.2. CL Subnet Mask 110
9.28.3. CL Default Gateway 110
9.28.4. WL Port 110
9.28.5. WL IP Address 110
9.28.6. WL Password 110
9.29. Monitor 111
9.29.1. RS-232C 111
9.29.2. RS-485 112
9.29.3. Control I/O 112
9.29.4. OP-02 Relay Output 113
9.29.5. OP-05 Parallel I/O 113
9.29.6. OP-07 Analog Output 114
10. Modbus Communication 115
10.1. Using Modbus RTU 116
10.2. Using Modbus TCP 116
10.3. Communication Command of Modbus 117
10.3.1. Example of Reading Input Register. 117
10.3.2. Example of Writing Holding Register 118
10.3.3. Example of Exception Response 119
10.4. Reference Number 120
10.5. Address 120
10.6. Communication Command of Modbus TCP 144
10.6.1. Protocol Layout 144
10.6.2. Example of Reading Input Register 144
11. Interface 145
11.1. Control I/O 145
11.1.1. Connection of Control I/O 145
11.2. RS-232C 146
11.2.1. Connection of RS-232C 146
11.3. RS-485 147
11.3.1. Connection of RS-485 147
11.4. Photo Eye Sensor 148
11.4.1. Connection of Photo Eye Sensor 148
11.5. OP-02 Relay Output 148
11.6. OP-05 Parallel Input / Output 150
11.7. OP-07 Analog Output. 152
11.7.1. The Way to Set Output Current 153
11.8. OP-17 Additional Analog Output Module 153
12. Maintenance 154
12.1. Error Messages of Indicator 154
12.1.1. Error Message Table 154
12.2. Backup of System Data 155
12.3. Restoring System Data 156
12.4. Initialization to Factory Settings 158
13. Specifications 159
13.1. Dimensions 160
13.1.1. AD-4412-CW 160
13.1.2. AD-4413-CW 161

1.1. Features

Note

- This instruction manual is described both weighing indicators of the AD-4412-CW and AD-4413-CW. Explanation of common part in this manual expediently uses the AD-4412-CW. Therefor if you use the AD-4413-CW, read and replace product name appropriately.
- The AD-4412-CW and AD-4413-CW are the indicator designed for classifying the weighing product on conveyor.
- Stainless steel is used to the front panel of the AD-4413-CW.

Display Unit

- The indicator equips 7-inch sensitive touch screen considered with operability.
- The indicator realizes easy readability and operability using the touch screen.

Dustproof \& waterproof structure

- The indicator equips waterproof construction complying with IP65 when mounting on panel.

Functions

- The indicator can store 1000 products (100 products for each 10 group) in maximum.
- The indicator can read picture from USB flash drive and display it on touch screen.
$\square \quad$ User data can be stored, classified and managed properly using management level. Therefore, operator can perform with safety operation of weighing system.
- The indicator can perform serial communication and communicate with peripherals to support modbus using TCP/IP communication and no program.

Output \& input Interface

- General input, rejecter output, alarm output, RS-232C / RS-485 input / output and TCP/IP are equipped as standard model.

1.2. Safety Precautions

Read the following precautions to use the indicator safely before use surely.

	Caution
Hazard of rotating object \square \square Keep hands and fingers away from the rotating part while the indicator is running. If product has stayed on conveyor, fell over or spilled, stop the indicator immediately, turn the power off and take necessary actions.	

Hazard of electrical shock

- Be sure to turn the power off before removing the display cover or control box cover for inspection.
- Keep the power turned off during the inspection.
- Turn the power on after the installation has been complete.

Precautions for installation

- Install the indicator on a solid surface away from sources of vibration.
- Install the indicator in a place that does not exposed to direct sunlight.
- Install the indicator in an area where it is not subject to direct flow from the window, electric fan or air conditioner.

Grounding

- Be sure to ground the indicator to avoid electrical shock, fire or malfunction.

Precautions for use

- Do not apply shock or excessive external force to the weighing conveyors.
- Do not apply a load exceeding the weighing capacity to the weighing conveyor.
- Do not modify or disassemble the indicator and conveyor. Do not change the parts.
- Install the weighing conveyor to horizontal level.
- Keep feeding of product with a constant interval.

Cooling the Indicator

$\square \quad$ To avoid overheating of the indicator, make enough clearance from other devices. If the temperature surrounding the indicator exceeds the operating temperature range, use fan for forced cooling to the indicator so as not to effect to weighing.

1.3. Compliance

Adaptation for local laws

The indicator has been tested and complies with Subpart J of Part 15 of FCC rules. (FCC = Federal Communications Commission in the U.S.A.)
The indicator equips a licensed wireless communication unit used 2.4 GHz band that specifies 2AC7Z-ESPWROOM02 to FCC ID. This license area is Japan and U.S.A. If you use other area, ask concerning of approval to local authority.

Cautions of wireless LAN (WiFi)

If the communication function of this scale is used near a wireless device that communicates in the 2.4 GHz range, the processing speed of both devices may decrease.
The wireless band using the scale is used by microwave oven, industry, science, medical device, mobile identifier in factory and licensed radio station and radio station of no license.

- Confirm that there is no these radio stations and mobile identifier around the weighing indicator.
- If radio interference by the indicator is occurred to radio station of mobile identifier, change the frequency or stop transmission of radio wave. (Example: Use of partition. Installation to other place etc.)

2.4 DS 4

2.4 : Wireless equipment of 2.4 GHz band.

DS : Modulation method is direct-sequence spread spectrum (DS-SS).
4 : The distance to occur radio interference is 4 m or shorter.
——— : The whole range is used and it cannot avoid band of mobile identifier.

2. Parts Names

This section is described for name of each part.

2.1. Front Panel

Drawing 2 Front panel of AD-4413-CW

Table 1 Names and functions of front panel

No.	Name	Description and Function
1.	Touch screen	The indication and settings of weighing can be displayed and operated.
2.	Start button	Weighing can start and conveyor can run.
3.	Stop button	Weighing and conveyor can stop.
4.	USB terminal cover	Waterproof cover for the USB terminal. A USB terminal is equipped on AD-4412-CW.
5.	CAL cover	The cover to prevent unnecessary operation of the calibration switch on AD-4413-CW.

2.2. Rear Panel

Table 2 Names and functions of rear panel

No.	Name	Description and Function
1.	Optional ports	Two optional boards can be installed in maximum.
2.	USB terminal	Terminal to connect USB device on AD-4413-CW.
3.	Input terminals of load cells	Four 350Ω load cells can be connected in maximum.
4.	RS-232C	It is used to communicate printer, barcode reader and computer.
5.	Control I/O	It is used to control peripherals. Input : 11 points. Output : 11 points.
6.	I/F terminals	RS-485 and photo eye sensor terminals. It is used for stream mode and communication with PLC using Modbus RTU. It uses as power source of photo eye sensor.
7.	Power switch	It is the main power supply switch for the indicator.
8.	Power cord terminals	Power supply range : 100-240 V~
9.	LAN connector	It is used communication using Modbus TCP and a PDF output to the printer on network.

3. Installing the Weighing Indicator

Procedures of installing the indicator and connecting power line are described in this chapter.

3.1. USB Flash Drive

3.1.1. Connecting USB Flash Drive

The terminal are used when product image data is registered and output data is stored into USB flash drive.
If you use USB flash drive, open the cover and connect USB flash drive to the USB terminal. When USB flash drive is identified by the indicator, USB mark is displayed at right-upper side of the screen.

User:Adminstrator \square

Caution

Use USB flash drive formatted in FAT32.
If USB flash drive of other format is used, format it in FAT32 before use.
If USB mark is not displayed after connecting USB flash drive, it may be incompatible to file system of operation system.
USB memory means USB flash drive.
Refer to "8.1 Format of USB Flash Drive" and format USB flash drive.

3.1.2. Removing USB Flash Drive

Caution

If USB flash drive is removed using method without the following procedure, it may cause a failure concerning storing data file.

Step 1. Press and hold the USB mark at right-upper side of the screen when removing USB flash drive.

User:Adminstrator

Step 2. After the USB mark hides, remove the USB flash drive.

3.2. Installing Option board

- In first, install the option board. Next, operate them.
- An option board can install to an arbitrary slot of either two slots.

Turn off power switch and remove power lines when removing cover of option board.

\. Warning

Do not touch the inside of the indicator immediately after turning off the power. It may cause catch electrical shock. Wait for 10 seconds and operate them.

$$
\boxed{\text { Caution }}
$$

Fix screws securely and do not leave loosen screw. If a loosen screw is left, electrical circuit
may short during use. It may cause malfunction due to noise.

Drawing 6 Installing option bard

3.3. Mounting the Weighing Indicator on Panel

- The installation of the indicator is the panel mounting using slide rails. When sealing gasket for the panel mounting is used, the front panel is waterproof structure complied with IP-65.

Drawing 7 Mounting weighing indicator on panel

3.3.1. Panel Mount Kit (AD-4412-10)

Step 1. Attach the sealing gasket to the indicator with its correct direction.
Step 2. Mount the indicator on the panel so as not to be kinked sealing gasket.
Step 3. Slide attachment parts on trenches of both side. Fix the indicator using attachment parts and screws (two M4x12) to be able to protect from water.
Step 4. Check the installation.

Drawing 8 Panel Mount Kit (AD-4412-10)

3.3.2. Attachment Kit (AD-4412-11) for Indicator Stand (AD-4402-25)

Step 1. Remove two $\mathrm{M} 3 \times 8$ screws and two $\mathrm{M} 4 \times 15$ screws on the rear panel on the indicator.
Step 2. Attach guide plates on the rear panel.
Interpose guide plates between the rear panel and screws of step 1.
Fix these screws and guide plates.
Step 3. Slide the indicator along slide rails on the indicator stand.
Step 4. Fix the indicator using two M4x8 screws included in accessory of attachment kit.
Step 5. The angle of the indicator can arrange using two knobs.

Drawing 9 Panel Mount Kit (AD-4412-11)

3.4. Connecting Load Cell Cables

- We recommend that you use the 6-wire shielded cable to prevent loss of weighing precision. If long load cell cables or summing box is used, use 6-wire shielded cable to prevent drift of weighing value due to temperature change. The 4 -wire shielded cable (that is shorted EXC+ \& SEN+ and shorted EXC- \& SEN-) is able to use, but it may cause weighing error when the summing box is used for plural load cells or long cable is used.

Compensating Voltage Output at Zero Point

- When the zero calibration is performed, if the output voltage of the load cell at the zero point is too large (the message "CERR2" is displayed) and it is too small (the message "CERR3" is displayed), the output voltage can be adjusted by adding a correction resistor as Drawing 11. Use the correction resistor of low (good) temperature coefficient.

In Case of Too Small Offset of Zero Point

Drawing 11 Adjusting voltage output at zero point

Adaptable Compression Terminal Parts (M3)

$\square=\stackrel{1.0_{k}}{\overbrace{i}}{ }_{3}$

3.5. Connecting Power Lines

The Indicator can connect to power line of $100-240 \mathrm{~V} \sim$.
Do not share the power cord with an electric power device to avoid operation errors.
Ground the indicator certainly.
Do not use an unstable power source.
Do not share the ground wire with an electrical device that generates noise.

Warning
Ground the indicator to avoid an electric shock or operation error. If the indicator is not grounded, it may cause an electric shock or malfunction due to discharge of static electricity.

Adaptable Compression Terminal Parts (M4)

4. Operation Window

Basic operations of the touch screen equipped in the indicator is described in this chapter.

4.1. Icon

This section describes the function of the common icon.
Other icons describes at each operation.

Icon	Name	Description and Function
	Home key	The key to return to weighing display.
	Return key	The key to back to last window. If you touch the key plural times, the indicator backs to weighing display.
	Left arrow key	
	Right arrow key	The key to move the cursor position of product selection, setting menu and plural pages on the display.
	Up arrow key	

4.2. Numerical Input

When numerical input is performs, the numerical dialog box is displayed.

1. The "BS" key to delete a numeric character input last. The cursor proceeds back one character.
2. The "CLR" key to delete all numeric characters.
3. When the "ESC" key is touched, the current input value is canceled and the dialog box is closed.
4. When the "ENT" key is touched, the current input value is stored and the dialog box is closed. If an input value is out of range, it does not stored.

Drawing 13 The numerical dialog box

4.3. Pull Down Menu

When an item selection is required, the pulldown selection dialog box appears.

1. Select an item and touch the "OK" key. The selected item is confirmed.

Drawing 14 Pulldown selection dialog box

4.4. IP Address

The IP address dialog box is displayed when it is necessary to specify the IP address of the indicator and network printer. Input numeric value after opening the IP address dialog box.

1. The "BS" key to delete a numeric character input last. The cursor proceeds back one character.
2. The "CLR" key to delete all numeric characters.
3. When the "ESC" key is touched, the current input value is canceled and the dialog box is closed.
4. When the "ENT" key is touched after inputting IP address, the current input value is stored and the dialog box is closed.

Drawing 15 IP Address dialog box

4.5. Alphanumeric Input

The alphanumeric dialog box is displayed when it is necessary to input characters.

1. The alphanumeric dialog box can input alphabet of small caps and numeric characters.
2. The "MODE" key to exchange dialog box of alphabet and numeric characters.
3. The "BS" key to delete a numeric character input last. The cursor proceeds back one character.
4. The "CLR" key to delete all numeric characters.
5. When the "ESC" key is touched, the current input value is canceled and the dialog box is closed.
6. When the "ENT" key is touched, the current input value is stored and the dialog box is closed.

Drawing 16 Uppercase letters

Drawing 17 Numerical letters

4.6. Password Input

The password dialog box is displayed at login window and registration of user password.

1. The "BS" key to delete a numeric character input last. The cursor proceeds back one character.
2. The "CLR" key to delete all numeric characters.
3. When the "ESC" key is touched, the current input value is canceled and the dialog box is closed.
4. When the "ENT" key is touched, the current input value is stored and the dialog box is closed. The input password is displayed as " $*$ " characters.

Drawing 18 Password input dialog box

5. Basic Operations

5.1. Operation Outline

The outline of weighing procedure and operations are described in this chapter.
An ordinary weighing operation is as follows : Refer to chapters after "5.2. Turning on the
Power" in accordance with the following flowchart.
*1 Refer to "5.5. Managing User level for Logging in" if you need to register a user.
Administrator user "Admin" is registered in factory settings.

5.2. Turning on the Power

Step 1. Turn on the indicator when power switch turns to "ON".
Step 2. The weighing mode is displayed after turning on.

Drawing 19 Weighing window (Initial setting)

5.3. Turning off the Power

Step 1. When turning off power switch to "OFF", the indicator is stopped.

Caution

- For emergency stop, perform the above operation. In that case, before turning the power ON again, be sure to resolve the cause of the stop.

5.4. Weighing Operations

Weighing operations are described in this chapter.

Note

- The description of this section assumes that the product has been registered and set beforehand.
- For details about the product registration and setting, refer to "5.6. Selection of Products and Detection Function".

5.4.1. Changing the Indication of weighing Value

Touch the "Display" key on the weighing screen to change the displaying size and contents of the weighing values. The contents are two types : Regular display and display with deviation. Both display can be enlarged and reduced.

Drawing 20 Example of magnifying display

Drawing 21 Example of shrinking display
The "regular display" shows the current weighing value. If a tare value is set, net value is displayed. The "display with deviation" shows a standard value and deviation of weighing value of product. The mark DEV is displayed in "display with deviation".
The display sequence of the "Display" key is as follows :

5.4.2. Adjusting Zero point (to Display Zero)

If the weighing value is not zero (0) when the conveyor is stopped, touch the "Re-Zero" key 10. to perform zero adjustment to set the weighing value to zero.

When the weighing value exceeds the zero adjustment range when the conveyor is stopped, zero adjustment cannot be performed.
Causes of the above situation are as follows :

- There may be foreign substances on the conveyor.
- Foreign substances are collected on the conveyor little by little. Accordingly, zero adjustment is performed each time. Now the mass value of the collected foreign substances may exceed the zero adjustment range.
- The weighing conveyor may be contacted with the infeed conveyor or reject conveyor.
- An excessive load is applied to the conveyor and the load cell is deformed.
- An upward excessive load is applied to the load cell and the load cell is deformed. For example : To hold and rise up the conveyor.
If the weighing value is not zero even if the foreign substances are removed and zero adjustment is performed, calibrate the indicator using a weight.
When the load cell is deformed within the usable range, the calibration using a weight will set the weighing value to zero.
If the weighing value is not zero even if the calibration using a weight, replace the weighing conveyor unit.

Note

- Refer to "6.1. Calibration the Indicator using a Weight" for the details about the calibration using a weight".

5.4.3. Starting and Stopping the Weighing Operation

Press the START button on the front panel to move the conveyor to start a weighing operation.
Press the STOP button on the front panel to stop the conveyor to finish a weighing operation.

5.5. \quad Managing User level for Logging in

This indicator can register user and limit available operations in accordance with user level for management. In this chapter, the way of editing user data, managing user level and entering in the mode are described.

Cautions

ㅁ User name "Admin", Password "0000" and management level "Administrator" are registered as default user.

- "Administrator" is required to edit user data.

Log in as "Administrator" to edit new user unregistered.

Note

- This management mode can perform "registration", "change" and "deletion" of user.
- This management mode can change user level to arbitrary level for management. Refer to "9.14.2. Start up User Level".

5.5.1. Management level of User

The indicator has four levels for management : "Administrator", "Supervisor", "Quality Manager" and "Operator". Refer to "Table 3 Difference between management levels" for details.
Assign an appropriate user level for each user so as to avoid unintentional operations and be able to use the indicator safely. Management level is set "Operator" when turning on the indicator.

Cautions

- "Operator" of management level means that is not more than "Quality Manager". "Operator" cannot perform "registration", "change" and "deletion" of user.

Table 3 Difference between management levels

Management level	Description
Operator	Starting weighing or stopping operation, display of summary and operation of selecting weighing product.
Supervisor	In addition to operations of "Operator", product settings and deletion of summary data.
Quality Manager	In addition to operations of "Supervisor", the whole system operations.
Administrator	In addition to operations of "Quality Manager", operations of user management.

5.5.2. Changing User

Management level is set "Operator" when turning on the indicator. It is required to log in with authorized management user when changing user.
The way to logging in with authorized management user shown below.

Caution

- User name "Admin", Password "0000" and management level "Administrator" are registered as default user.
Step 1. Touch the "User" key \square on the weighing screen to display "Login window".

Step 2. Input user name and password registered previously.
Step 3. Touch the "Login" key after inputting them.
Step 4. Touch the "Return" key to proceed to the weighing mode.

5.5.3. Registering User

The procedure to register user is shown below.
Step 1. Touch the "Edit" key to display "User edition window".

Drawing 23 User edition window
Step 2. Select a user name from user list and input user name.
Step 3. Input password. Password is four characters.
Step 4. Select a management level.
Management level is "Administrator", "Supervisor", "Quality Manager" and "Operator".
Step 5. Touch the "Register" key to display it in user list.
Step 6. Touch the "Return" key to return the "Login window".

5.5.4. Changing User Information

The content of registered user can be changed using this user management mode.
The procedure of changing user data is shown below.
Step 1. Display the "User edition window".
Step 2. Touch the "Edit" key to display "User information window".

Drawing 24 User information window
Step 3. Select a user to change the data from user list.
Touch the "Select" key to display "Window to change user information".
Touch the "Right arrow" key $\boldsymbol{\square}$ to return "User information window".

Drawing 25 Window to change user information
Step 4. Select password. Input new password of four characters.
Step 5. Select management level.
Step 6. Touch the "Change" key to store them.

5.5.5. Deleting User

The user can be deleted using the user management mode.
There are two types for deletion : The way to delete a specified user and all registered users. The procedure to delete user is shown below.

Caution

- Default user "Admin" cannot be deleted.
- The current user logged in cannot be deleted.
- If user except default user "Admin" is logged in and all user are deleted, user is set to "Operator" automatically.
Step 1. Display the "User edition window".
Step 2. Touch the "Delete" key to display the "Window to delete user".

Drawing 26 Window to delete user

Deleting Specified User

Step 1. If specified user is deleted, select a name from user list of the "Window to delete user".
Step 2. Touch the "Delete" key to display the following "Dialog box to confirm deletion". Touch the "YES" key to delete user.
2013/11/18 11:25 No: 01-001 User:Admin

Drawing 27 Dialog box to confirm deletion
Step 3. A specified user is disappeared from user list.

Deleting all user
Step 1. Touch the "All delete" key to display the "Dialog box to confirm deletion".

Drawing 28 Dialog box to confirm deletion
Step 2. Touch the "YES" key to delete all user except "Admin".

5.6. Selection of Products and Detection Function

This chapter describes for the changing procedure of product selection and detection function required for weighing. If it is necessary to register product, log in "Quality Manager" or greater user in advance.
This chapter assumes that user is "Quality Manager" or greater user.

Note

Refer to "9. The Details of Settings" concerning of other settings except settings of this chapter. The settings are stored for each changing it during the procedure.
If the "Return" key is touched during the procedure, previous window is displayed.

5.6.1. Registering Products

The procedure to register product is shown below.
Step 1. Touch the "Product" key on the "Weighing window" to display the "Window to select product.
Step 2. Input group number (Selection range : 1 to 10).
The registration page can switch using the "Left arrow" key and "Right arrow" key Touch the product number to register. When product number is touched, the cell changes orange and product can be edited. Product number can be edited directly, too.

Step 3. Touch the "Edit" key to register the product. "Product profile window" is displayed. In the window, product name, code, image can be edited and the settings can be copied or deleted.

Note

- The "Image" key can register product image stored in USB flash drive.

Refer to "5.6.9. The Registration of Product Image".

- The "Copy" key can copy registered product settings previously to the current product number. Refer to "5.6.10. Creating a Copy of Product Settings".
- The "Delete" key can delete a registered product settings.

Refer to "5.6.1 1 . Deleting Product Settings".

2019/05/17 15:31			No: 01-001		User:Adminstrator	USB
Edit	Detect Function		Control Revis			
No.			001			
Name					NOIMAGE	
Code						
Target			0.00	g		
DO Reference				0		
Copy			Delete		Image	

Drawing 30 Product profile window (Edit tab)

Step 4. Touch the "Detect function" tab to display the product profile window.
The settings of each product can edit in the product profile window.
Refer to "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" and below.

Drawing 31 Product profile window (Detect function tab)

5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)

Standard values for detection can be specified in the "Window of threshold values".
Step 1. Touch the "Detect basis" key in the "Detect function" tab to display the "Window of threshold values".

2019/05/17 15:32	No: 01-001	User:Adminstrator		USB
Detect Basis Setting1	Detect Basis Setting2			
Reject Stage	3 Stage		*	
Target		0.00	g	
Hi Hi Limit		0.00	g	
Hi Limit		0.00	g	
Lo Limit		0.00	g	
Lo Lo Limit		0.00	g	

Drawing 32 Window of threshold values

Step 2. Select separation number either the three stages or the five stages.
Step 3. Touch the "Target" item and input mass value of target product.
Step 4. Touch the "Hi limit" item and input Hi limit mass value of product.
It is deviation value from target value. Input it smaller than HiHi limit value.
Example: If target value is 100 g and tolerance value of upper side is 150 g ,
Hi limit value is 50 g .
$50 \mathrm{~g}=150 \mathrm{~g}-100 \mathrm{~g}$
Step 5. When the five stage separation is used, touch the "HiHi limit" item and input HiHi limit value. It is deviation value from target value. Input it bigger than Hi limit value.
Step 6. Touch the "Lo limit" item and input Lo limit mass value of product. It is deviation value from target value. Input it bigger than LoLo limit value.
Example : If target value is 100 g and tolerance value of lower side is 50 g , Lo limit value is 50 g .

$$
50 \mathrm{~g}=100 \mathrm{~g}-50 \mathrm{~g}
$$

Step 7. When the five stage separation is used, touch the "LoLo limit" item and input LoLo limit value. It is deviation value from target value. Input it smaller than Lo limit value.
Step 8. Touch the "Return" key to display the "Product profile window".

5.6.3. Setting Product Length and Velocity

The procedure to specify the processing performance is shown below.
Step 1. Touch the "Detect parameter" key in the "Detect Function" tab to display the "Window to set product length and velocity".

Step 2. Touch the "Product length" item and input product length.
Step 3. Touch the "Speed" item and input velocity of the conveyer.
Step 4. Touch the "Return" key to display the "Product profile window".

Drawing 33 Window to set product length and velocity

5.6.4. Setting the Digital Output (DO)

The procedure to specify the settings for each product concerning of stopping conveyor and DO (Digital Output) is shown below.

Note

- Refer to "9.4. DO Map" for details of DO.

Step 1. Touch the "DO" key "Detect function" tab to display "DO setting window". Touch the "DO" key to display "Setting window of DO map".

Drawing 34 Setting window of DO map

Step 2. Touch each check box to make check so that outputs each judgement. Items of judgement can be changes using vertical scroll bar. DO number can be changed using horizontal scroll bar.
Example : If judgement is "over" and you want to output a signal from DO1, touch to check box with white line. Then, check mark \bigcirc is appeared.

Drawing 35 Check window of DO map

Step 3. When product is weighed and is output judgement, DO outputs in accordance with settings of delay time and signal holding time of separator.

Note

- Refer to "5.6.5. Setting the Delay Time and Holding Time" for delay time and signal holding time.

Step 4. If check mark exists in "Stop" item and applicable judgement is output, the conveyor stops.
Step 5. If check mark exists in "BZ" item and applicable judgement is output, buzzer sounds.
Step 6. Touch the "Return" key to display the "DO setting window".

5.6.5. Setting the Delay Time and Holding Time

Note

- Refer to "9.5. Control I/O". DO Action" for delay time and signal holding time.

The procedure of settings for DO behavior after judgement is shown below.
Delay time means time from judgement to output.
Signal holding time means time to maintain DO output signal.
Step 1. Touch the "Control I/O" key on "DO setting" tab to display "The DO setting window". Judgement item can be changed using "Tab".

Step 2. Touch DO and input delay time for each DO.
Example: In case that rejecter of flipper type is used.
Set the delay time that is transportation time from judgement at the end of the weighing conveyor to be fed to the rejecter. At this time, consider swing time of rejection flipper.
If distance from weighing conveyor to rejecter is 0.2 m , conveyor velocity is $30 \mathrm{~m} / \mathrm{min}$. and swing time of rejecter is 0.3 sec ., delay time is $0.1 \mathrm{sec}=0.2 \mathrm{~m} \div 30 \mathrm{~m} / \mathrm{min} \times 60 \mathrm{sec}$. -0.3 sec .
Additionally, swing time of the rejecter depends on the air cylinder cushion needle setting. Therefore, so further fine adjustment is required.
If a comparator light is connected, we recommend to shorten delay time and increase hold time for visual confirmation.

Step 3. Touch the holding time and input it for each DO.

Drawing 36 Timing chart of DI/DO (Digital input / Digital output)

Drawing 37 Example of delay time

2018/09/14 07:06		No: -		User:Adminstrator	
BZ-DO3	DO4-7	DO8-11			
Buzzer			Time	Positive Logic	
		0.00	sec	0.00	sec
D01			Time	Positive Logic	
		0.00	sec	0.00	sec
DO2			Time	Positive Logic	
		0.00	sec	0.00	sec
D03			Time	Positive Logic	
		0.00	sec	0.00	sec

Drawing 38 The DO setting window

5.6.6. DO Test Function

The DO behavior function can use to DO test output.
Touch DO number in "DO test function window" to test it.

5.6.7. Setting a Tare Value

Tare value can be set the following window.
Step 1. Touch the "TARE" key on "Compensation Setting" Tab to display the window of Drawing 40.
Step 2. Input a tare value. If it is necessary to cancel tare value, input " 0.00 " to tare value.
When tare value stored in the indicator is deleted, tare value is set to " 0.00 ".
Tare mark Tare is displayed while tare value is used.
Step 3. Touch the "Return" key to display "Product profile window".

Drawing 40 The setting window of tare value

5.6.8. The Selection of Weighing Product

The procedure to select a weighing product.
Step 1. Touch the "Product" key on the "Weighing window" to display the "Window to select product".
Step 2. Input a group number (Range: 1 to 10).
The registration page can change using the "Left arrow" key and "Right arrow" key Touch the product number to select it. Then, the area of selected product becomes orange. Additionally, a product number can be input directly.
Step 3. If the "Read" key on the "Window to select product" is touched, the settings of the selected product is input.
Otherwise, if the "START" button is pressed while displaying the "Window to select product", the "Window profile product" and each function windows, the product data can be read.

Caution

If a selected product is same as the weighing product, the change of the product using the "START" button cannot use.
Step 4. Touch the "Return" key to display "Product profile window".

5.6.9. The Registration of Product Image

The procedure to store the product image.

Caution

- Store product image in USB flash drive beforehand.
- The file name including space character cannot register.
- The file extension of registrable image file is ".jpg" JEPG file.

Note

- Refer to the "3.1.1. Connecting USB Flash Drive" to connect the USB flash drive.
- Refer to the "8.1. Format of USB Flash Drive" to format the USB flash drive.
- Refer to the "3.1.2. Removing USB Flash Drive" to remove the USB flash drive.

Step 1. Display the "Edit" tab on the "Product profile window".
Step 2. Connect the USB flash drive to the indicator.
Step 3. Touch the "Image" key to display the "Image selection window".

Drawing 41 Image selection window

Step 4. Touch the holder name to open it. If you want to move to parent directory, touch the "Return" key. If you want to finish image selection, touch the "Cancel" key. If you want to display thumbnail, touch the "Thumbnail display" key
Step 5. Touch the image file name to select it.
Step 6. Touch the "OK" key . Then, the image is registered and display to "Edit" tab on the "Product profile window".

Drawing 42 Example to store product image

5.6.10. Creating a Copy of Product Settings

The procedure to copy the product settings.
If you want to use the product settings to another product, you can create a copy of the product settings with this procedure. This procedure is shown below.
Step 1. Display the "Edit" tab on the "Product profile window".
Step 2. Touch the "Copy" key.
Step 3. The dialog box to copy the product settings is displayed.

Drawing 43 Dialog box to create a copy of product settings
Step 4. Select a source group number and input it.
Step 5. Select a source product number and input it.
Step 6. Touch the "OK" key.
Step 7. The specified product settings is copied.

Caution

- Do not copy the product settings that is specified as source DO reference.

5.6.11. Deleting Product Settings

The procedure to delete the product settings.
The procedure is shown below.
Step 1. Display the "Edit" tab on the "Product profile window".
Step 2. Touch the "Delete" key.
Step 3. The dialog box to delete the product settings is displayed.
If you want to delete it, touch the "OK" key.

Drawing 44 Dialog box to delete product settings
Step 4. The product settings is deleted and becomes unregistered.

Caution

- Do not copy the product settings that is specified as source DO reference.

5.7. Summary of Weighing Result

This section describes summary of data totalization of weighing result.
Touch the "Summary" key \qquad in the "Weighing window" to display the "Weighing history window".
"Weighing history" \leftrightarrow "All summary" \leftrightarrow "OK summary" \leftrightarrow
"Number of samples summary" \leftrightarrow "Number of OK samples summary" \leftrightarrow
"Histogram" $\leftrightarrow " \bar{X}$ control chart" \leftrightarrow " R control chart" \leftrightarrow "Weighing history"

Note

- Histogram, control chart and summary results can output to USB flash drive and printer.

Refer to the "7. Output of Weighing Results and Summary" concerning of how to output it.

- USB flash drive of FAT32 format can use only.

Refer to the "8.1 . Format of USB Flash Drive" concerning of how to format it.

5.7.1. Weighing History

The weighing result can display last 100 data in the weighing history window in maximum.
Touch the "Update" key \rightarrow to update the display to latest history.
Touch the "Up arrow" key 1 to move to " R control chart window".
Touch the "Down arrow" key to move to "All summary window".
Touch the "Return" key to return to "Weighing window".

5.7.2. All Summary

The "All summary" means totalization of all weighing products that failed products is included.
Touch the "Clear" key ${ }^{*}$ to delete "all summary" of all weighing results.
Touch the "Output" key 능ㅇ to display dialog box with output format of "all summary".
Summary result can be outputted, when USB flash drive is connected to USB port and the "PDF" key is touched.
Summary result can be printed, when PostScript printer is connected to USB port and the "Print" key is touched.
Summary result can be printed, when dump printer is connected to USB port and the "Print" key is touched.

Touch the "Up arrow" key to move to the "Weighing history window".
Touch the "Down arrow" key to move to the "OK summary window".
Touch the "Return" key to return to "Weighing window".

Note

- The summary results of "Print" and "PDF" includes all summary, OK summary, number of samples summary and number of OK samples summary.
- The summary result includes all summary, OK summary, number of samples summary and number of OK samples summary.

5.7.3. OK Summary

The "OK summary" means totalization of weighing products that is passed.
Touch the "Up arrow" key to move to the "All summary window".
Touch the "Down arrow" key to move to the "Number of samples summary window". Touch the "Return" key to return to "Weighing window".

Drawing 47 OK summary window

5.7.4. Number of Samples Summary

The "Number of samples summary" means totalization of weighing products per the specified number of samples concerning of the current product selected.
When the weighing in unit of specified number of samples is complete, the "Number of samples summary" will be reset.
The "Number of samples summary" includes failed product.
Touch the "Up arrow" key to move to the "OK summary window".
Touch the "Down arrow" key to move to the "Number of OK samples summary window".
Touch the "Return" key to return to "Weighing window".
Example : In case of number of samples $=10$

Drawing 48 Number for samples summary window

5.7.5. Number of OK Samples Summary

The "Number of OK samples summary" means totalization of passed weighing products per the specified number of samples concerning of the current product selected.
When the weighing of passed products in unit of specified number of samples is complete, the
"Number of OK samples summary" will be reset.
Touch the "Up arrow" key to move to the "Number of samples window".
Touch the "Down arrow" key to move to the "Histogram window".
Touch the "Return" key to return to "Weighing window".
Example : In case of number of samples $=10$
$\left|\begin{array}{llllllllll|llllllllll|llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \mid & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & \circ & \circ & \circ & \circ & \circ & \circ & \bullet & \circ & \circ & \circ & 0 & \circ & \circ & \circ & \bullet & \circ & \circ & \bullet & \circ & \circ & \circ & \circ & \\ 0 & \circ & 0 & \circ & \circ & \circ & \circ & \circ & \circ & \circ\end{array}\right|$
Data per Reset this summary \circ :OK product \bullet : Failed product number of OK samples

Drawing 49 Number for OK samples summary window

5.7.6. Histogram

A Histogram can display the frequency distribution of all summary (that includes failed products) concerning of the current product selected. Store the center value and section width of histogram for displaying and printing out in advance. The relation between the center value and section width of histogram is shown in Table 4 below. The center value is placed in section No. 9 and frequency is counted for each section. The management level so as to clear a graph is required supervisor or greater user.

Cautions

- Last center value and section width is used even if they are changed during summary processing. If the "Clear" key in touched, the center value and section width are updated.
- When section width is changed, data of graph is deleted and section width is updated.
- Histogram excludes judgements of "Detect two", "Unsplit", "Ext 1" , "Ext 2" and "Metal".

Note

- Refer to "9.2.2. Target" and "9.6.5. Width of Section" for settings of the center value and section width of histogram. Center value: S, Section width: k

Table 4 Relation between ranges and border values

Section No.	Border value	Range
1	-	W < W2
2	W2 = S - 7k	W2 $\leq \mathrm{W}<\mathrm{W} 3$
3	W3 = S - 6k	W3 $\leq \mathrm{W}<\mathrm{W} 4$
4	W4 = S - 5k	W4 $\leq \mathrm{w}<\mathrm{W} 5$
5	W5 = S - 4k	W5 $\leq \mathrm{W}<\mathrm{W} 6$
6	W6 = S - 3k	$\mathrm{W} 6 \leq \mathrm{w}<\mathrm{W} 7$
7	W7 = S - 2k	$\mathrm{W} 7 \leq \mathrm{W}<\mathrm{W} 8$
8	W8 = S - k	W8 $\leq \mathrm{W}<\mathrm{W} 9$
9	W9 = S	$\mathrm{W} 9 \leq \mathrm{w}<\mathrm{W} 10$
10	W 10 = $\mathrm{S}+\mathrm{k}$	$\mathrm{W} 10 \leq \mathrm{W}<\mathrm{W} 11$
11	$\mathrm{W} 11=\mathrm{S}+2 \mathrm{k}$	$\mathrm{W} 11 \leq \mathrm{W}<\mathrm{W} 12$
12	$\mathrm{W} 12=\mathrm{S}+3 \mathrm{k}$	$\mathrm{W} 12 \leq \mathrm{W}<\mathrm{W} 13$
13	W13 = S + 4k	$\mathrm{W} 13 \leq \mathrm{W}<\mathrm{W} 14$
14	W14 =S + 5k	$\mathrm{W} 14 \leq \mathrm{W}<\mathrm{W} 15$
15	W15 = S + 6k	$\mathrm{W} 15 \leq \mathrm{w}<\mathrm{W} 16$
16	W16 = S + 7k	W16 $\leq \mathrm{w}$

If the "Output" key is touched, the dialog box of graph with output format is displayed. When USB flash drive is connected to USB port and the "PDF" key is touched, graph can be outputted. When PostScript printer is connected to USB port and the "Print" key is touched, It is printed.

Touch the "Up arrow" key to move to the "Number of OK samples window".
Touch the "Down arrow" key to move to the " \bar{X} Control Chart window".
Touch the "Return" key to return to "Weighing window".

5.7.7. \bar{X} Control Chart

The \bar{X} control chart is displayed based on number of samples, size of sample and data of $\overline{\bar{X}}$. If $\overline{\bar{X}}$ is used, graph is displayed based on $\overline{\bar{X}}$.
If $\overline{\bar{X}}$ is $0, \overline{\bar{X}}$ is calculated using weighing data inputted for control chart and graph is displayed.
Control chart is made using data that corresponds to size of sample per number of samples

Note

- Refer to "9.6.1 . Num of Samples" and "9.6.2. Sub Samples" for number of sampled, size of sample.

Example : In case of number of samples $=10$, size of samples $=5$
First 5 samples (size of samples) from 10 samples are assumed as control chart data.
$\left|\begin{array}{llllllllll|lllllllll|llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \bullet & \bullet & \bullet & \bullet & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \mid & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \circ & \circ & \circ & \circ & \circ & \bullet & \bullet & \bullet & \bullet & \bullet & \circ & \circ & \circ & \circ & \circ\end{array}\right|$

Size of samples Data of control chart
This data can be plotted like Drawing 51.
Touch the "Update" key to update it.

Note

- \bar{X} control chart and R control chart can be converted to PDF files and printing output.

Drawing 51 Window of \bar{X} control chart

Touch the "Output" key to display dialog box to select output format of control chart.
The PDF file of control chart can be outputted, when USB flash drive is connected to USB port and the "PDF" key is touched.
If postscript printer is connected to the indicator, the control chart can be printed when the "Print" key is touched.
Touch the "Up arrow" key \mathbb{T} to move to the "Histogram window".
Touch the "Down arrow" key to move to the " \bar{R} Control Chart window".
Touch the "Return" key to return to "Weighing window".

5.7.8. R Control Chart

The R control chart is displayed based on number of samples, size of sample and data of \bar{R}. If \bar{R} is used, graph is displayed based on \bar{R}.
If \bar{R} is $0, \bar{R}$ is calculated using weighing data inputted for control chart and graph is displayed.
This data can be plotted like Drawing 52.
Touch the "Update" key to update it.

Note

- Refer to "9.6.4. \bar{R} " for \bar{R} settings.

Drawing 52 Window of R control chart

Touch the "Up arrow" key \mathbb{T} to move to the "Control chart window".
Touch the "Down arrow" key to move to the "All summary window".
Touch the "Return" key to return to "Weighing window".

6. Adjustment Operations for the Indicator

This chapter describes operations concerning of adjusting the indicator.

6.1. Calibrating the Indicator using a Weight

This section describes the adjustment procedure to display weighing value correctly.
The procedure using calibration weight is shown below.
Step 1. Login with "Quality Manager" or greater.
Step 2. Touch the "Setting" key on the "Weighing window" to display the "Common settings window".

Step 3. Touch the "Adjust Cal" key on the "Balance" tab to display the "Cal window".

Drawing 54 Cal window

Step 4. Touch the "Adjust Cal" key to display the "zero point calibration" dialog box. Place nothing on the weighing conveyer and touch the "OK" key to store the zero point. If you want to cancel the current zero point calibration and to proceed to span calibration, touch the "Cancel" key.

Step 5. The "span calibration" dialog box is displayed after zero point calibration. Touch the "OK" key to display the "weight value input dialog box". Input the weight value and touch the "OK" key to store it.

Step 6. Touch the "OK" key to specify the calibration weight on the "span calibration" dialog box.

Drawing 57 Span calibration dialog box
Step 7. Touch the "Return" key to return to the "Common settings window".

6.2. Settings for Date and Time

This chapter describes how to set a built-in clock. The setting procedure is shown below.
Step 1. Login with "Quality Manager" or greater.
Step 2. Touch the "Setting" key on the "weighing window" to display the "common settings window".
Step 3. Select the "System setting 2" tab.
Touch the "Date / Time" key to display to the "Date \& time window".

Drawing 58 Date \& time window

Step 4. Select and input each data of year, month and date.
Step 5. Select and input each data of hour, minute and second.
Step 6. Touch the "Yes" key on the "New date and time" dialog box to store them. The clock is updated.

Apply	
Change time and date settings?	
YES	NO

Drawing 59 New date and time dialog box
Step 7. Touch the "Return" key to return to the "Common settings window".

6.3. \quad Setting up LAN interface

This chapter describes the settings of LAN. The setting procedure is shown below.

Cautions

- The password of factory setting is "123456789". Change the password at first use.
- Use 8 characters for the password.
- Number of connection to the indicator using LAN is 4 in maximum.

Step 1. Login with "Quality Manager" or greater.
Step 2. Touch the "Setting" key on the "Weighing window" to display the "Common settings window".
Step 3. Select the "Connection" tab on the "Common settings window" Touch the "LAN" key to display the "LAN interface window".
Step 4. The indicator can use wired LAN and wireless LAN. These setting procedure are as follows:

Wired LAN

Select and input each settings of IP address, subnet mask and default gateway.

Drawing 60 LAN interface window (Cable tab)

Wireless LAN

Choose use or invalid of the wireless port. Specify wireless IP address and password.

Step 5. Turn the power off once and on again using the power switch. Then the settings of LAN has effective.

7. Output of Weighing Results and Summary

This indicator can output weighing data and summary of data totalization to the USB flash drive or printer. This chapter describes procedures of outputting data.

7.1. Output to USB Flash Drive

Weighing history, histogram, control chart and summary can be outputted.

Cautions

- The USB flash drive formatted in FAT32 can use.
- Do not remove the USB flash drive in accessing.

Note

- Refer to "3.1.1. Connecting USB Flash Drive" for the procedure to connect it.
- Refer to "8.1. Format of USB Flash Drive" for the procedure to format it.

7.1.1. Output of Weighing History

This section describes the procedure to output weighing history. If weighing history is stored in the USB flash drive, file of weighing history is created with either condition below.

Condition to create new folder

New folder can be created in the condition that the following conditions is effective and a folder of folder name "AD4412CW_date of folder creation" is not in root directory of the USB flash drive.

- At turning on the power.
- After connecting USB flash drive.
- After clock data is updated.

Condition to create new file

- When the condition of new folder is met.
- When data counts of weighing history becomes 65000 or above.
- When weighing history is stored, an error occurred.

The weighing history file with CSV format is stored into folder that is created at root of the USB flash drive.
File name stored in folder is "Date of file creation_Time of file creation_Weight_Result.csv". The procedure to output weighing history is shown below.
Step 1. Insert the USB flash drive to USB port of the indicator.
Step 2. When USB flash drive is connected, USB indicator is displayed at upper-right area of the display.

User:Adminstrator
Confirm the connection of the USB flash drive and start weighing.
Step 3. When weighing is performed, weighing history is stored in the USB flash drive.
Step 4. When you want to remove the USB flash drive, remove it after touch and hold the USB indicator until it is hidden.

7.1.2. Example: Output File of Weighing History

The format outputted to the USB flash drive is shown below.
"Date (year / month / day), time (hour : minute : second, 10 milliseconds.), group number - product number, weighing result, judgement result"

Example of this format is shown to Drawing 62.
Judgement result outputted to the USB flash drive is shown below.

$2018 / 7 / 12$,	$10: 03: 12$,	54,	$01-001$,	100.5,	OK
$2018 / 7 / 12$,	$10: 03: 49$,	40,	$01-001$,	162.7,	HiHi
$2018 / 7 / 12$,	$10: 04: 26$,	58,	$01-001$,	123.9,	Hi
$2018 / 7 / 12$,	$10: 05: 02$,	52,	$01-001$,	97.1,	Lo
$2018 / 7 / 12$,	$10: 05: 38$,	56,	$01-001$,	80.1,	LoLo
$2018 / 7 / 12$,	$10: 06: 00$,	60,	$01-001$,	0.0,	Detect Two
$2018 / 7 / 12$,	$10: 06: 32$,	54,	$01-001$,	0.0,	Unsplit
$2018 / 7 / 12$,	$10: 06: 59$,	78,	$01-001$,	100.6,	Metal
$2018 / 7 / 12$,	$10: 07: 29$,	34,	$01-001$,	102.5,	Ext1
$2018 / 7 / 12$,	$10: 07: 57$,	80,	$01-001$,	98.4,	Ext2

Table 5 Relation between results and meanings

Judgment results in file	Description
OK	Passed (within target weighing value)
HiHi	Weighing value is bigger than HiHi limit value.
Hi	Over weight. Weighing value is bigger than Hi limit value.
Lo	Under weight. Weighing value is smaller than Lo limit value.
LoLo	Weighing value is smaller than LoLo limit value.
Detect Two	The next product is conveyed to the weighing conveyor before the weighing value of the previous product is confirmed.
Unsplit	The product length is longer than the specified product length.
Metal	Metal detected
Ext 1	External 1
Ext 2	External 2

7.1.3. PDF output of Histogram, Control Chart and Summary

This section describes the procedure to output PDFs of histogram, control chart and summary of totalization result to the USB flash drive.
The procedure of outputting each PDF file is shown below.

Note

- Refer to from "7.2.2. Printing Sample of Histogram" to" 7.2.4. Print Sample of Summary" concerning of histogram, control chart and summary of totalization result outputted to the USB flash drive.
- The file name of PDF outputted to the USB flash drive is "AD4412CW_PDF_date of folder creation".

Step 1. Insert the USB flash drive to USB port of the indicator.
Step 2. Confirm the connection of the USB flash drive. Start weighing.
Step 3. Display summary of data that must store after weighing.
Step 4. Touch the "Output" key 䧑 of the "Summary window" to display the "Output format" dialog box.

Oufput format select			
Please select the output format.			
Print	PDF	Dump	Cnacel

Drawing 63 Output format dialog box

Step 5. Touch the "PDF" key to display the "PDF output" dialog box.

Drawing 64 PDF output dialog box
Step 6. Touch the "OK" key to output PDF file to the USB flash drive.

7.2. Output to the Postscript Printer

Histogram, control chart and summary of totalization data can be output to PostScript printer and PDF file.

Cautions

- PostScript printer is required for printer output.

Note

- Refer to "8.3. Connecting the PostScript Printer" for connecting printer.

7.2.1. Output to Postscript Printer

The procedure of printing data is shown below.
Step 1. Display the summary window to be printed after weighing.
Step 2. Touch the "Output" key to display the "Output format" dialog box.

Drawing 65 Output format dialog box

Step 3. Touch the "Print" key to display the "Print setting" dialog box.

Drawing 66 Print setting dialog box
Step 4. Select and input number of printing.
Step 5. Touch the "OK" key to print them.

7.2.2. Printing Sample of Histogram

Printing sample of histogram is shown below.
The PDF file outputted to the USB flash drive is the same as this printing sample.
The three stage separation

The five stage separation

7.2.3. Print Sample of Control Chart

Printing sample of control chart is shown below.
The PDF file outputted to the USB flash drive is the same as this printing sample.
The three stage separation

The five stage separation

7.2.4. Print Sample of Summary

Printing sample of summary is shown below.
The PDF file outputted to the USB flash drive is the same as this printing sample.
The three stage separation

The five stage separation

7.3. Output to the Dump Printer

Summary data and statistic data can be output to the dump printer such as AD-8126 that can connect to the RS-232C interface.
Dump printer can be used for printing of a summary or weighing result that is smaller than approximately 100 piece per minute or less.
RS-232C is used to the connection between this indicator and dump printer.

Cautions

- The format of dump printer is 24 characters per line.

Use the printer that can print 24 characters or more per line.

- Printing data are all summary, OK summary, number of samples summary and number of OK samples summary. Histogram cannot print.
- Terminator is fixed to <CR> <LF>.

Note

- Refer to "9.25. Output Format" for data output of each weighing.
- Data can be received at the computer connected to serial interface.

7.3.1. Output to the Dump Printer

The procedure to print each data using the printer is shown below.
Step 1. Display the window (of all summary, OK summary, number of samples summary and number of OK samples summary) to print data after weighing.
Step 2. Touch the "Output" key to display the "Output format" dialog box.

Oufput format select			
Please select the output format.			
Print	PDF	Dump	Cnacel

Drawing 67 Output format dialog box
Step 3. Touch the "Print" key to display the "Print output" dialog box.

Drawing 68 Printing output dialog box
Step 4. Touch the "OK" key to print them.

All Summary by Data Totalization
The three stage separation

区सTMए

W．
एा EE
Wme

एलः

Tサए \quad サये 5

एक्य णएँ ए

पणालि णील
T世E ：
ए世
H：
घः गेद ए＝
एक्ष णि
Mिएमт
फणचडण

T＋E जिएी
फल्य4．

ण× मिकी $+1245=5$

एः \quad पद्यद्

The five stage separation

किier मि मिएक्ए

ETTMES

W!

$$
\text { ए } \mathrm{OE}
$$

NTme

Tए：

H5
म

एणास णनी
T＋E：\quad Q4 $=$

फ मि
H：

णேस1＋
प्य $=$
पुस ए＝

कापTएTTए एीT

माशद 6

Qक्य
ए मापद4，
＋प्य： 5 ．
मिश्यद्ध

OK Summary by Data Totalization

The three stage separation

```
Wक्Wक्षक्स ए क्षक्षक्षे
एक्ष: बालन्धान
TME: HEH:EX
Mए, ए- 44|ूली
```


घTMTS
W.
ए1 लघ
MEne

बकह

Tret:
fi

Pexer एe" ए
The पूलe $+\boldsymbol{\square}$

बमाए कीए

एँ

The five stage separation

```
WWक्Wक्स ए Wक्Wक्क्स
एक+# कौक्यदन
Tmer {अM1%z
णே&%:
                                    \square-44प%्य
```


Mentrimety Mme:

जTाME

जि:
हा -
MEne

एதE

क्या 5ter 5 5+5e Teणet \because हथध 5

आe पே
जिए एथ $\quad=5 \square$

बणाएध गीन
T世स
एँ

धानएTए एला

 पः \quad पद्य, 5 आ: 4 स

Number of Samples Summary by Data Totalization

The three stage separation

ФTाएड

W．
ए।
जबएe

एबस

Pext 5tex：
3 5＋5
Tryt F

Pex एe：

एet 5－ए
बामिए कीए
T＋Eः
1945 F＝
民：
H：
आपद ए＝
－ $2+5$
प्ये

1श45 F＝
णேए？
Fएeध＂：
जिए F＝
आुः \％＝

कानाएTए एला

T世E ण्याप

णिए Mय जिकीए Paएe： ए： ए：	

The five stage separation

किए Mmber es एक Tine	$\frac{9+्}{4 E}$
MएE： SEMF फः जnttemet एयक्षलक्व	ए－ $44+\boldsymbol{a}$ पणएकए ME： बேサே：

जTTME

फ．
का लe
पसme

एकะ

बामास एना
T世न ：
एँ
414%
H：
！＂
प

UEFए＋
Fक्या\％
1245－$=$
प45－$=$
－245＝
－4 $5=$
1945＝

काताएक एीत

ण＋ே फिएीस
＋4थअ5．65

ए \quad サये，

Number of OK Samples Summary by Data Totalization

The three stage separation


```
एक्ष कौकनक्धा
```



```
Mएघ1: आ-44,2+|
```


जTTME

W.

एा लघ
पबतe

एलः

Pext कter उ 5tes

Hi mit: terate
स मि+ $+12+455$

एett 5e,
बाणिए कीए
Tपघ
ए:
1245 = $=$

जमाडाए एना

फप्य,
आn बिकt

$$
\text { पः } \quad \text { पाद्ध }
$$

The five stage separation


```
एक+: बएक्एन
TME: Iउ|!#, 
MएE!
    \square-44,4,
```


जTTME

W.

ए1 Me
पसш

एबE

एँच $5+5=$ Trest	प्द्ध
H1,	+194,
H: mintit	+9+4,
¢ ¢ ¢mt\%	+サ+4,
- \% mity	+ब+4,
ए¢ ए¢	पtate
Tr: पே¢	サबए,
¢¢t ¢5	¢,

बणाए कौन
स्द \quad प्र $=$

जीएडTए एकाए

T+E मentt
-

कaएe tex̧4:
पः \quad पद्ध

8. Peripherals

This chapter describes operations of peripherals and the way of connecting them.

8.1. Format of USB Flash Drive

This section describes the procedure of formatting the USB flash drive.
The procedure of formatting the USB flash drive is shown below.

Cautions

- When the USB flash drive is formatted, the whole of data stored in it is deleted.
- Make backup data in advance before formatting the USB flash drive because the deleted data cannot restore.

Note

- Refer to the "3.1.2. Removing USB Flash Drive" for how to remove the USB flash drive.

Step 1. Login with "Quality Manager" or greater.
Step 2. Connect the USB flash drive to the USB port on the indicator.
Step 3. When USB flash drive is connected, USB indicator is displayed at upper-right area of the display.

User:Adminstrator uss
Step 4. Touch the "Setting" key on the "Weighing window" to display the "Common settings window".
Step 5. Select the the "system 2" tab of the "Common settings window". Touch the "USB memory" key.

Drawing 69 Common settings window (System tab 2)

Step 6. Confirm the USB indicator on the "USB memory window". The USB indicator is displayed when connecting the USB flash drive.

Drawing 70 USB Memory window

Step 7. Touch the "USB format" key to display the confirmation dialog box. Touch the "OK" key to format it.
Step 8. Wait that the formatting finishes.
Step 9. Touch the "Return" key to return to the "Common settings window".

8.2. Connecting the LAN interface

This section describes the connection of wired LAN and wireless LAN that is built in the indicator. The procedure of connecting them is shown below.

8.2.1. How to Connect to Network Using Wired LAN

The wired LAN is used when Modbus communication using "Modbus TCP" is performed. Connect the connector of LAN cable in the market to the LAN terminal on the rear panel, connect the other to LAN terminal of master device or Ethernet hub.

Note

- Store the settings of wired LAN in advance, if Modbus communication using "Modbus TCP" is performed.
- Refer to the "6.3. Setting up LAN interface" concerning the settings of wired LAN.

8.2.2. How to Connect to Network Using Wireless LAN

The wireless LAN is used when remote network monitoring is performed.
Prepare a communication device such as personal computer, tablet or smartphone that wireless LAN is built-in.
Select this indicator form wireless network list of the communication device.
Enter SSID "AD-4412CW-xxxxxxxxx" and password.
"xxuxxxxxx" is serial number of the indicator.

Cautions

- The password of factory setting is "123456789". Change the password at first use.

Note

- Store the settings of wireless LAN in advance, if remote network monitoring is performed.
- Refer to the "6.3. Setting up LAN interface" concerning the settings of wireless LAN including password.

8.3. Connecting the PostScript Printer

PostScript printer is used printing of graph and summary result.
The connection between the indicator and printer is used wired LAN.

Cautions

- Consult to network manager concerning connection between the indicator and printer.
- Refer to the accessory manual concerning IP address for the printer.
- Store IP address for the printer in advance, if printer is connected to wired LAN.

Note

- Refer to the "6.3. Setting up LAN interface" concerning the settings of wired LAN.
- Refer to the "9.16.1. Printer IP Address " concerning IP address for the printer.

8.4. Remote Monitor

Remote network monitoring using wireless is the function that can monitor information of the indicator and statistical data etc. by external network devices in real time.
After the indicator and external device are connected to network, if you access to IP address of the indicator using web browser, monitoring window is displayed.
Example : http:// xxx.xxx.xxx.xxx (is preset IP address of wireless LAN)

Drawing 71 Remote monitor (home window)
Information that can monitor from remote network monitor is as follows :

- Product information
- Content of product settings
- Summary of totalization data
- Statistic data
- Histogram
- Control chart

Cautions

- We cannot recommend use such as continuous monitoring because wireless LAN may become unstable depended on placed environment.
- Browsers that has checked operations are Microsoft Edge, Google Chrome, Mozilla Firefox and Safari. Internet Explorer does not work properly.
- Refer to accessory manual of wireless LAN for settings of wireless LAN.

Note

- Browsable information of statistical data, histogram and control chart are the same as contents of PDF and printer etc.

8.5. Replacing Product Using Serial Communication

The indicator can replace product using serial communication of RS-232C interface.
The procedure of replacement of product is as follows :
The indicator is receives product code form peripherals of bar code reader or PLC etc. and searches product code from product group. The replacement is performed.

Cautions

- Product code received during replacement is ignored.

Note

- The settings of RS-232C needs if the replacement using serial communication is performed.
- Refer to the "9.26. RS-232C" for the settings of RS-232C.

9. The Details of Settings

Details of settings for the weighing indicator are described in this chapter. Refer to "Table 6 of setting list according to product" and "Table 7 of common settings list" for windows and settings of the indicator.

Part 1/2 of Setting List
Table 6 of setting list according to product

		Product name		
	Edit tab	Product code		
			Reject stage	
			Target	
			Hi Hi limit	
			Hi limit	
		Detect basis	Lo limit	
			Lo Lo limit	
			Over weight exception	
			Consecutive fail stop	
			Consecutive fail num	
			Product length	
			Speed	
			Weighing mode	
			Conveyor stop timer	
			Product detection	
		Detect Parameter	Near zero range	
			Auto mode	
			Filter	
			Judge timer	
			Average timer	
				Reference
setting	Detect			OK
	function tab			HiHi
				Hi
				Lo
				LoLo
				Detect two
				Unsplit
				Metal
				Ext 1
				Ext 2
		DO	DO map	Belt running
				Belt stop
				Consecutive fail
				Emergency stop on
				Weighing error
				Photo eye sensor error
				Bin full
				Air pressure
				Total number count
				OK item count
				Reject confirmation
				Reject photo eye sensor

Part $2 / 2$ of Setting List

Productsettingwindow	Detect function tab	DO	DO map	FC+
				FC-
				+Zone 1
				+Zone 2
				+Zone 3
				+Zone 4
				+Zone 5
				-Zone 1
				-Zone 2
				-Zone 3
				-Zone 4
				-Zone 5
			Main unit DO behavior	Behavior
				Delay time
				Hold time
				Polarity
			Option port 1 DO behavior	Behavior
				Delay time
				Hold time
				Polarity
			Option port 2 DO behavior	Behavior
				Delay time
				Hold time
				Polarity
		Statistical	Num of samples	
			Sub samples	
			$\overline{\bar{X}}$	
			\bar{R}	
			Width of section	
	Control revision tab	Tare Auto zero	Tare	
			Auto zero range	
			Dead zone timer	
			Observation timer	
			Averaging time	
			Auto zero sample	
			Coe	
		Dynamic compensation	D. comp value (Dynamic compensation value)	
		Feedback control	Feedback control target	
			Feedback control range	
			Feedback control step [$\mathrm{g} / \mathrm{sec}$]	
			Feedback control step [$\mathrm{sec} / \mathrm{g}$]	
			Feedback control sample	
			Feedback control wait time	
			Control target	
			Zone 1	
			Zone 2	
		Step control	Zone 3	
			Zone 4	
			10C sample	
			10C wait time	

			Unit	g
			Decimal point	0
			Division	1
			Capacity	3000 g
			Digital filter	0 \%
		Weighing	Zero point range	7 Hz
	Balance tab		Power on auto zero range	10 \%
	Balance tab		Zero tracking time	1 sec .
			Zero tracking weight	0.5 digit
			Stability time	1.0 sec .
			Stability weight	2 digit
			Cal weight	
		Cal	Zero point	
			Span	
			Identification name	
			Startup user level	operator
			Conveyer length	
			Unsplit range	20 \%
		Main unit	Conveyor mode	Invalid
		Main unit	Connect device priority	Invalid
			Curb chattering	0 sec .
			Photo eye sensor polarity	True
			Photo eye sensor time out	30 sec .
			Random check	Invalid
			Language	English
Common			Display mode	Weighing result
setting			Negative weight	Display
window		Display	Display data	Display data weight
			Standby mode	0 sec .
			Brightness	
				OK
				HiHi
				Hi
	System 1 tab			Lo
				LoLo
			Dimap	Detect two
				Unsplit
				Material
				Ext 1
				Ext 2
				Input trigger
		DI	Main unit	Configuration
			DI behavior	Delay time
				Chattering
				Input trigger
			Option port 1	Configuration
			DI behavior	Delay time
				Chattering
				Input trigger
			Option port 2	Configuration
			DI behavior	Delay time
				Chattering
			DI indicator	

Part 2/3 of Common Settings List

Part 3/3 of Common Settings List

9.1. Product Name and Product Code

9.1.1. Product Name

Input the product name displayed at the "Weighing window" and "Window to select product". The product name can input 40 characters in maximum.

9.1.2. Product Code

Input the product code displayed at the "Weighing window" and "Window to select product". The product code can input 40 characters in maximum.

9.2. Detect Basis
 9.2.1. Reject Stage (Count of Separation)

Select 3 stage or 5 stage to the reject stage to classify product.

9.2.2. Target

Input weight value to the "target value" as standard value of the product.
Refer to the "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" for the settings.

9.2.3. HiHi Limit

Input the "HiHi limit value" of the product.
Refer to the "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" for the settings.

9.2.4. Hi Limit

Input the "Hi limit value" of the product.
Refer to the "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" for the settings.

9.2.5. Lo Limit

Input the "Lo limit value" of the product.
Refer to the "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" for the settings.

9.2.6. LoLo Limit

Input the "LoLo limit value" of the product.
Refer to the "5.6.2. Settings of Threshold Values (Target, HiHi Limit, Hi Limit, Lo Limit, LoLo Limit)" for the settings.

9.2.7. Over Weight Exception

Input value that assumes the product of the "over weight exception" as OK product. If the "over weight exception" is "effectiveness" and this applicable product is detected, the "over weight exception" indicator $\square \mathrm{ov}$ is displayed in the "Weighing window".

9.2.8. Consecutive Fail Stop

The "consecutive fail" is the settings to detect that consecutive defective products occur more than preset count of failed product (of Lo limit, LoLo limit, Hi limit and HiHi limit).
If the settings of consecutive fail is "effectiveness", it can detect.
Refer to the "9.2.9. Consecutive Fail Num" for count of consecutive defective products.

9.2.9. Consecutive Fail Num

The "count of consecutive fail" is the settings to input the count of consecutive failed product (of Lo limit, LoLo limit, Hi limit and HiHi limit) that is used to detect consecutive defective products.

9.3. Detect Parameter

9.3.1. Product Length

The "product length" of length of the weighing product is used for detection of "unsplit judge".

9.3.2. Speed

Input a velocity of the conveyor to the "speed".

9.3.3. Weighing Mode

The weighing mode can be selected from "passing weighing", "stop weighing" and "static weighing".

1. Passing weighing

The judgement is performed using the "Judge timer" and "Average timer" during a weighing product is passing on the conveyor.
2. Stop weighing

The judgement is performed using the "Judge timer" and "Average timer" after the conveyor is stopped using the "Conveyor stop timer" when the indicator detects that a weighing product is entered on the conveyor. This mode performs judgement of "Two put" and "Unsplit", too.
3. Static weighing

The conveyor is stopped using the "Conveyor stop timer" when the indicator detects that a weighing product is entered on the conveyor. The judgement is performed after the indicator detects stability of a weighing product. This mode performs judgement of "Two put" and "Unsplit", too.

9.3.4. Conveyor Stop Timer

The "Conveyor stop timer" for the weighing product stores a time from entering on the conveyor to stopping when the "Stop weighing" or "Static weighing" is used.

Length of conveyor (mm) - Length of weighing product (mm)
$0<$ Conveyor stop timer (sec.) < \qquad

9.3.5. Product Detection

The "Product detection" specifies a method of the detection.
Choose a method from "Photo eye sensor" and "Near zero".

1. Photo eye sensor

When the weighing product enters on the conveyor and the photo eye sensor is shaded, it regards as a weighing product is detected.
2. Near zero

When the weighing product enters on the conveyor and the weighing value rises above threshold value of zero point range, it regards as a weighing product is detected.

Cautions

- The "Unsplit" cannot judge because the product length cannot identify.
- It is necessary that displays once the weighing value within near zero so as to detect next weighing product after last weighing product enters on the conveyor.
- "Two put" may judge correctly. (Next weighing product cannot detect during last weighing product leaves on the conveyor. When the weighing value is decided and the detection can be effectiveness, if the vibration of releasing the product from the conveyor is above the threshold value, detection error occurs. etc.)
- Processing rate of the "Near zero" is smaller than "Photo eye sensor".

9.3.6. Near Zero Range

The "Near zero range" stores a threshold value that weighing value regards as nearly-zero. When the weighing value becomes above the threshold value, it means "The start time that weighing product enters on the conveyor".
When the weighing value becomes under the threshold value, it means "The end time that weighing product releases from the conveyor".

9.3.7. Auto Mode (to Set Parameters)

The "Auto mode" stores parameters that is automatically calculated when "Filter", "Judge timer" and "Average timer" are effectiveness.
Do not change these parameters except authorized persons.

9.4. DO Map (Digital Output Map)

DO map specifies whether stops the conveyor or not in each judgement result. And DO map stores the settings concerning DO output.
Refer to the "5.6.4. Setting the Digital Output (DO)" to how to store the settings of DO map. The output circuit cannot use by the settings of DO map only. Store the settings of the "9.5. Control I/O".

9.4.1. DO Map Reference

The product number of the same group can be referred concerning the content of DO map and DO behavior. Input a product number of the same group as target of reference. If " 0 " is inputted, specified reference becomes invalid.

Cautions

- Just product number 1 of each group cannot use the function of DO map reference. Additionally, it cannot delete and copy product settings.
- This function is can specify just invalid reference as target of reference. If target product refers other product and/or is not registration, it cannot refer.

9.4.2. Output Definition of DO Map

OK : It is outputted when last weighing result is within target value.
HiHi : It is outputted when last weighing result is within HiHi limit.
Hi : It is outputted when last weighing result is within Hi limit.
Lo: It is outputted when last weighing result is within Lo limit.
LoLo: It is outputted when last weighing result is within LoLo limit.
Detect Two: It is outputted when next product is entered on the conveyor before last product released from the conveyor.
Unsplit : It is outputted when product length is longer than preset product length.
Metal : It is outputted when DI assigned to metal detection is active.
Ext 1: It is outputted when DI assigned to external 1 is active.
Ext 2 : It is outputted when DI assigned to external 2 is active.
Belt Running: It is outputted when the conveyor is moving.
Belt Stop: It is outputted when the conveyor is stopped.
Consecutive Fail : It is outputted when an error of consecutive defective products occurs.
Emergency Stop On : It is outputted when DI assigned to emergency stop is active.
Weighing Error: It is outputted when last weighing result is value above capacity (+over) or negative value (-over).
Photo Eye Sensor Error : It is outputted when an error occurs to photo eye sensor.
Bin Full : It is outputted when full capacity is detected.
Air Pressure: It is outputted when DI assigned to air pressure error is active.
Total Num Count : Total number count is outputted when total number in the number of samples summary reaches to preset number.
OK Item Count: Confirmation item count is outputted when total number in the number of OK samples summary reaches to preset number.
Reject Confirmation: It is outputted when an error occurs at confirmation to release product from the conveyor.

Reject Photo Eye Sensor : It is outputted when an error occurs to photo eye sensor used for confirmation to release product from the conveyor.
FC+ : It is outputted when pulse width of feedback control (FC) is positive.
FC- : It is outputted when pulse width of feedback control (FC) is negative.
+zone 1: It is outputted when the average weighing value calculated with the 10 stage control function is within +zone 1 .
+zone 2 : It is outputted when the average weighing value calculated with the 10 stage control function is within +zone 2.
+zone 3 : It is outputted when the average weighing value calculated with the 10 stage control function is within +zone 3 .
+zone 4: It is outputted when the average weighing value calculated with the 10 stage control function is within +zone 4.
+zone 5 : It is outputted when the average weighing value calculated with the 10 stage control function is within +zone 5 .
-zone 1: It is outputted when the average weighing value calculated with the 10 stage control function is within -zone 1.
-zone 2 : It is outputted when the average weighing value calculated with the 10 stage control function is within -zone 2.
-zone 3 : It is outputted when the average weighing value calculated with the 10 stage control function is within -zone 3.
-zone 4 : It is outputted when the average weighing value calculated with the 10 stage control function is within -zone 4.
-zone 5 : It is outputted when the average weighing value calculated with the 10 stage control function is within -zone 5 .

Cautions

- The judgement of highest priority is applied for each weighing.

Example : When "Detect two", "Metal" and "Lo" is occurred at the same time, judgement is applicable as "Detect two" if the priority of the external input is invalid or as "Metal" if the priority is effectiveness, either judgement is outputted. Additionally, the output of "Metal" is continued until "Detect tow" is cleared if the external input is effectiveness.

Note

- The priority list of judgement are the following 2 types.
- Rank "1" is highest priority.
- Refer to "9.14.6. Connect Device Priority " to how to change priority.

Priority	The priority of the external input is "invalid".	The priority of the external input is "effectiveness"
1	Detect tow	Ext 1
2	Unsplit	Metal
3	Ext 1	Ext 2
4	Metal	Detect tow
5	Ext 2	Unsplit
6	LoLo	LoLo
7	Lo	Lo
8	HiHi	HiHi
9	Hi	Hi
10	OK	OK

- The settings of Modbus can be assigned each 8 byte (4 byte upper figures, 4 byte lower figures) as the followings. Set to "1" against to assigned bit.

Uit	
Upper 4 byte	
MSB 31	0
30	-zone 2
29	-zone 1
28	+zone 5
27	+zone 4
26	+zone 3
25	tzone 2
24	+zone 1
23	FC-
22	FC+
21	Reject photo eye sensor
20	Reject confirmation
19	OK item count
18	Total number count
17	Air pressure error
16	Bin full
15	Photo eye sensor error
14	Weighing error
13	Emergency stop
12	Consecutive fail
11	Belt stop
10	Belt running
9	Ext 2
8	Ext 1
7	Metal
6	Unsplit
5	Detect tow
4	LoLo
3	Lo
2	Hi
1	HiHi
LSB 0	OK

MSB : Most significant bit, High-order bit.

Lower 4 byte	
Bit	Description
MSB 31	0
30	0
29	0
28	0
27	0
26	0
25	0
24	0
23	0
22	0
21	0
20	0
19	0
18	0
17	0
16	0
15	0
14	0
13	0
12	0
11	0
10	0
9	0
8	0
7	0
6	0
5	0
4	0
3	0
2	-zone 5
1	-zone 4
LSB 0	-zone 3

LSB : Least significant bit, Low-order bit.

Example : When you assign "Bet running", "Unsplit", "Detect two", "-zone 5" and "-zone 3" to DO1, the settings is shown below.
Specify $2^{10}+2^{6}+2^{5}=1120$ to upper 4 byte.
Specify $2^{2}+2^{0}=5$ to lower 4 byte.
Therefore, input 1120 into address 40271 and 5 into address 40273 using each 4 byte access.

9.5. Control I/O (Part of Digital Output)

9.5.1. DO Behavior

This section describes the settings of DO behavior. DO : Digital Output.

1. Hold Time

The "Hold time" to maintain ON or OFF state of DO can be controlled.
ON state of DO can be maintained for "Hold time" after delay time.
When "DO start flag" is turned on during last output, timer is reset and output is maintained.
When the flag is turned on during changing product and the settings of product, the output is turned OFF forcibly.
2. Next Weighing

ON state of DO is maintained from turning on it to the start time of next weighing (detection of rising edge of photo eye sensor). Do not overlap the "start trigger of next weighing" with delay processing.
3. Next Judgement

When DO turns to ON state, it is maintained until the end of judgement.

4. Dialog Box

When DO turns to ON state, it is maintained until the indicator receives a command to turn off it. When weighing is stopped, DO is maintained until dialog box is hidden. The output is maintained during changing product and the settings of product.

9.5.2. Delay Time

"Delay time" is time length from judgement to signal output of DO.
Refer to the "5.6.5. Setting the Delay Time and Holding Time" for the settings.

Cautions

- "Delay time" may include jitter of approximately 50 ms . Make enough time length.

9.5.3. Hold Time

"Hold time" is time length of outputting DO signal.
Refer to the "5.6.5. Setting the Delay Time and Holding Time" for the settings.

Cautions

- "Hold time" may include jitter of approximately 50 ms . Make enough time length.

9.5.4. Polarity

"Polarity" can specify either positive logic or negative logic.
Positive logic: When a signal is outputted from DO, "A-contact (arbeit contact)" of the relay makes a contact. The settings of Modbus is set to " 0 ".
Negative logic: When a signal is outputted from DO, "B-contact (break contact)" of the relay makes a contact. The settings of Modbus is set to " 1 ".

9.6. Statistics

9.6.1. Num of Samples

Number of samples is used to totalization of control chart, number of OK samples.
Input range : 2 to 9999 (it is amount of samples or more)

9.6.2. Sub Samples

Number of averaging when control chart is created.
Input range: 2 to 10

9.6.3. \bar{X}

Center line (CL) for creating \bar{X} control chart.
\bar{X} control chart is displayed using this value when $\overline{\bar{X}}$ is not 0 .

9.6.4. R

Center line (CL) for creating R control chart.
R control chart is displayed using this value when \bar{R} is not 0 .

9.6.5. Width of Section

The range of histogram.
It is reset when width of section is changed.

9.7. Tare

Tare value is used to display net value of product.
Refer to the "5.6.7. Setting a Tare Value" to set tare value.

9.8. Auto Zero

The automatic zero adjustment is the function to assign averaging value of weighing value for a averaging time to zero value if adapting to all conditions of "auto zero range", "dead zone timer" and "observation timer" during conveyor is moving.
When the "auto zero" function is "enable", this function is performed.

9.8.1. Auto Zero Range

The range to perform the function of automatic zero adjustment.
When the range is " 0.01 " or lager, the function is effective. If weighing values are within this range for averaging time, averaging value of weighing values is assigned to zero.

9.8.2. Dead Zone Timer

Dead zone timer store time width to inhibit automatic zero adjustment after automatic zero adjustment.

Example:

If 5 seconds is specified, automatic zero adjustment does not work for 5 second.

9.8.3. Observation Timer

The settings to inhibit automatic zero adjustment before loading product so that can perform automatic zero adjustment with stable weighing value.

Example:

If a timing to load on the conveyor like package is not detected clearly (like product loads on the conveyor before detection of photo eye sensor), it specifies so as not to perform automatic zero adjustment with unstable weighing value.

9.8.4. Averaging Time

The averaging time of weighing value using automatic zero adjustment.

9.8.5. Auto Zero Sample

The count to calculate average of automatic zero adjustment.
When number of automatic zero adjustment reaches this count, zero compensation value is replaced to these averaging value.

Example:

If count is set to 3 , when each zero adjustment are $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}$, compensation value of zero point is $(1+2+3) / 3=2 \mathrm{~g}$.

9.8.6. Coe (Coefficient)

The coefficient against to compensation value at automatic zero adjustment.
Range : 1.0 to 100.0

Example:

If coefficient is 50% and compensation value is 5 g , corrected compensation value is 2.5 g .

9.9. D. Comp. Value

The dynamic compensation value of automatic zero adjustment.
Range : 0.5 to 2.0

9.10. Feedback Control (FC)

Feedback control is the function to output pulse from DO. This pulse width adapts to the difference between target value and current weighing value. This pulse is used for feedback control of packing machine.
When target value of FC is " 0.01 " or more, this function is effective and FC mark \quad FC displayed on the window.
When pulse of feedback control is outputted, FC mark \quad FC changes to "Feedback control + " FC+ or "Feedback control - " FC- for 3 seconds.

Note

․ When pulse width is shorter than 0.1 seconds, pulse is not outputted and averaging starts again immediately.

- Data except judgement of "Detect two", "Unsplit", "Ext 1" and "Ext 2" are used to calculation of averaging.

The response and action of feedback control are shown below.
Step 1. When the first product is detected after weighing is started, the indicator waits for preset FC waiting time.
Step 2. After waiting time, averaging of the weighing value performs for the number of times for FC averaging.
Step 3. The difference between average value of step 2 and FC target value is calculated. FC step [sec. / g] x (average value [g] - FC target value [g]) = pulse width [sec.]
Step 4. Calculated pulse width is outputted from FC+ if pulse width is positive or from FC- if pulse width is negative.
Step 5. Return to step 1 and repeat these steps.

- Weighing value
-..-..-... : FC target value, FC range
Averaging FC of 5 times: Target value, Hi limit and Lo limit
Excluded value to averaging because it is out of FC range.

Drawing 73 Tendency control function

9.10.1. Feedback Control Target

The mass value as target value of feedback control (FC).
When target value of feedback control is " 0.01 " or more, this function is effective.

9.10.2. Feedback Control Range

The range used averaging calculation of feedback control (FC).
The center value of the range is target value of feedback control.

9.10.3. Feedback Control Step : [g/sec.] or [sec./g]

The parameter to specify pulse width in unit of [$\mathrm{g} / \mathrm{sec}$.] or [sec. / g]. If one is decided, the other is also calculated automatically.
Range : 0.01 to 1 [$\mathrm{sec} . / \mathrm{g}$] (1 to 100 [$\mathrm{g} / \mathrm{sec}$.])

9.10.4. Feedback Control Sample

The number of times that is used to averaging of weighing value for the judgement of this difference. Range : 1 to 9999 [times]

9.10.5. Feedback Control Waiting Time

Waiting time until averaging is start after feedback control is outputted.
Range: 0 to 999 [seconds]

9.11. Step Control

The function of 10 stage control judges weighing value based on the settings and outputs to
DO (digital output). This function is used for DO and does not affect to summary.

Note

- Refer to "9.4. DO Map" for details of DO.
- Refer to "9.5. Control I/O" for delay time and Hold time of DO.

The procedure to use 10 stage control is as follows :
Step 1. Specify waiting time after detecting first product on the conveyor when weighing is started.
Step 2. Weighing value are averaged using number of times for the averaging after this detection.
Step 3. Average weighing value is judged using threshold values, zones after averaging.
Step 4. DO is outputted using DO delay time and hold time based on DO map.
Step 5. Return to step 1 and repeat procedure.

Drawing 7410 stage control function

9.11.1. Control Target

The step control uses threshold values used at judgement of 10 stage control.

9.11.2. Zone 1 to 4 of 10 Stage Control

The settings of zone is used to judge weighing value on 10 stage control.
The initial values of zone are 0 g at factory settings.
Each total value of zone is total value from zone 1 to applicable zone.

Example:

If the setting value of zone 1 is 10.0 g and the setting value of zone 2 is 20.0 g , total value of zone 2 is $10.0 \mathrm{~g}+20.0=30.0 \mathrm{~g}$.

Drawing 7510 stage control function window

9.11.3. 10 C Sample

The number of times to average weighing value that is used to judgement of 10 stage control.
Range : 1 to 9999 [times]

9.11.4. 10 C Wait Time

Waiting time from DO (digital output) of 10 stage control to start time of next averaging.
Range : 1 to 999 [seconds]

9.12. Weighing

9.12.1. Unit

A weighing unit can select from $\mathrm{kg}, \mathrm{g}, \mathrm{lb}$ and oz .
If the law in your area permits, you may use all of the units. Ib and oz can be used in U.S.A. version.

Cautions

- If the current unit is changed, summary of totalization is reset.

9.12.2. Decimal Point

The position of decimal point is $0,0.0,0.00,0.000$ and 0.0000 .
This indicator uses point (Dot) for format of decimal point.

9.12.3. Division

The readability of weighing value uses $1,2,5,10,20$, and 50 .

9.12.4. Capacity

The weighing capacity is maximum value that this indicator can display.

9.12.5. Digital Filter

Digital filter at stopping the conveyor uses a cutoff frequency to suppress drift of weighing value. When low frequency is used, drift decreases and response becomes slow.
Cutoff frequency : 7, 10, 14, 20, 28, 40, 56, 80, 110, None [Hz]

9.12.6. Zero Point Range

Touch the "Zero" key on the "weighing window" to input an adjustable range of zero point using ratio against to capacity.

Example :

If capacity is 10000 g and range of zero point is $2 \%, \pm 200 \mathrm{~g}$ is adjustable range of zero point.

9.12.7. Power on Auto Zero Range

When indicator turns on, specify a range of automatic zero adjustment using ratio against to the capacity.

Example:

If capacity is 10000 g and range of zero point is $10 \%, \pm 1000 \mathrm{~g}$ is adjustable range of zero point when turning on.

9.12.8. Zero Tracking Time

The zero tracking is a function to display automatically zero while the conveyor stops. Zero tracking time is time range to perform this function. If gross weighing values are within a weighing range (zero tracking weight) during time range (zero tracking time), the zero tracking function is performed and 0 is displayed.

9.12.9. Zero Tracking Weight

The zero tracking weight specifies weighing range to perform zero tracking function.
When zero tracking weight is set to "None", the function does not perform.
If weighing value is within zero tacking weight for zero tracking time when the conveyor stops, the function is performed and 0 is displayed.
Zero tracking weight: $0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5$, None [digit]
Example:
If zero tracking weight is 1.0 digit and zero tracking time is 3 seconds, when gross weighing value is within 0 ± 1.0 digit for 3 second, the zero tracking function is performed and 0 is displayed.

9.12.10. Stability Time

Time range to be used on the stability detection function.

9.12.11. Stability Weight

Range of weighing value to be used on the stability detection function.
Zero tracking weight: $1,2,3,4,5,6,7,8,9$, None [digit]

9.13. Cal (Calibration)

Refer to the "6.1. Calibrating the Indicator using a Weight" for adjustment procedure.

9.13.1. Weight

A value of weight used for adjustment can input value between 0 g and capacity of load cell in unit of gram.

9.13.2. Zero Point

Zero point value is a base point of weighing. Unit is mV / V.

9.13.3. Span

Value of the adjustment weight in unit of mV / V.

9.14. Main Unit

9.14.1. Identification Name

Identification name uses to find this indicator from multiple devices.
Identification name can use up to 40 characters.

9.14.2. Start up User Level

Management user can specify a management level of automatic login user at turning on the indicator.
Management level of user : "Operator", "Supervisor", "Quality manager" and "Administrator"

Cautions

- Management level of management user needs "Administrator".
- Management user can only change management level. The settings of user cannot change.

9.14.3. Conveyor Length

This length means length of weighing conveyor.

Cautions

- If the length is changed, this update needs time because the whole parameters of judgement are calculated.
- When update has finished, restart of the indicator needs.

9.14.4. Unsplit Range

Tolerance value of unsplit can specify in ratio (\%) against to product length.

9.14.5. Conveyor Mode

The conveyor mode moves only the conveyor without weighing. If conveyor mode is "enable", it is performed and cannot change the settings.

9.14.6. Connect Device Priority

If an external input is specified to priority input, external signal inputted to DI has priority.

Note

Refer to "9.4.2. Output Definition of DO Map" for priority order of judgement.

9.14.7. Curb Chattering

Duration time can be specified to prevent curb chattering of the photo eye sensor.

9.14.8. Photo Eye Sensor Polarity

Output of photo eye sensor can be selected either positive logic or negative logic.

9.14.9. Photo Eye Sensor Timeout

Timer to detect shading error of photo eye sensor.
If light of photo eye sensor is shaded longer than this preset time, it regards as photo eye sensor error.
Range : 0.1 to 99.0 [seconds]

9.14.10. Random Check (To input data previously)

Random check is the function that can shorten reading time by inputting product settings of the same group at turning on the indicator.

Cautions

- If the random check function is changed to effective, restart the indicator to use it.

9.15. Display

9.15.1. Language

Language can specify either Japanese or English.

9.15.2. Display Mode

The display method of weighing mode is shown below.

1. Weighing Result

Weighing result is only displayed.
2. The Current Weighing Value

The current weighing value of the conveyor is displayed.

9.15.3. Negative Weight

The selection either displaying negative weighing value or not.
If display mode of weighing value is "Current value" and "Not displayed", the display of the indicator is blank when weighing value is negative.

9.1 5.4. Display Data

Data displayed on weighing monitor in the indicator can be specified. When the conveyor is moving, it cannot change.

9.15.5. Standby Mode

The waiting mode is the function to hide the display of the indicator if operation is not during preset time of standby mode.
Store time until standby mode is started.

9.15.6. Brightness

Specify brightness of display on the indicator.

9.16. Connection

9.16.1. Printer IP Address

Specify an IP address for the printer connecting to the indicator.

9.17. DI Map (Digital Input Map)

DI map is used when "Reject check", "Approve check" and "Reject + Approve" are assigned. The checked item of "Reject check" and "Approve check" can be confirmed.
In "Reject + Approve", item of "Approve check" can be confirmed when item is checked, item of
"Reject check" can be confirmed when item is not checked.
Refer to the "9.18. Control I/O (Part of Digital Input)" concerning of "Reject check",
"Approve check" and "Reject + Approve".

9.18. Control I/O (Part of Digital Input)

The timing chart of DI is shown below. DI : Digital input.
The pulse width of DI needs "duration time to prevent chattering" + 50 ms or more.
Processing of judgement is performed when sample is released from the conveyor.

Drawing 78 Dl window

9.18.1. Input Trigger

The input trigger can be select from "Rising edge", "Falling edge", "Both edge", "High level" and "Low level" at pull-down menu. These actions are shown below.

1. Rising Edge

The method to regard as input trigger when rising edge $(0 \rightarrow 1)$ of the input is detected.
Next trigger can detect after the input becomes 0 once.
Input after chattering is prevented

Drawing 79 Input trigger by rising edge
2. Falling Edge

The method to regard as input trigger when falling edge $(1 \rightarrow 0)$ of the input is detected.
Next trigger can detect after the input becomes 1 once.

Drawing 80 Trigger input by falling edge

3. Both Edge (Rising Edge and Falling Edge)

The method to regard as input trigger when both rising edge $(0 \rightarrow 1)$ and falling edge $(1 \rightarrow 0)$ of the input are detected.

Pulse of "High level" are outputted at both edges when signal is detected at both edges.

Drawing 81 Trigger input by both edge (rising edge and falling edge)

4. ON Level

The method to regard the input level from rising edge $(0 \rightarrow 1)$ to falling edge $(1 \rightarrow 0)$ as input trigger.

Drawing 82 Trigger input by active high level
5. OFF Level

The method to regard the input level from falling edge $(1 \rightarrow 0)$ to rising edge $(0 \rightarrow 1)$ as input trigger.

Input after chattering is prevented

Drawing 83 Trigger input by active low level

9.18.2. Configuration

The function of each DI can specify using pull-down menu.
Available functions are shown below.

1. Disable

The content means "no function". The setting value of Modbus is 0 .
2. Weighing Start

To assign a signal of weighing start. The setting value of Modbus is 1.
3. Weighing Stop

To assign a signal of weighing stop. The setting value of Modbus is 2 .
4. Start/Stop

To assign a signal of weighing start and weighing stop. When this signal is high level (low level), weighing is started. When this signal is low level (high level), weighing is stopped. input trigger uses both edges always. The setting value of Modbus is 3 .
5. Stop Release

To assign a signal to hide dialog box from peripherals if dialog box is displayed when judgement and error is detected. The setting value of Modbus is 4 .
6. Summary Clear

To assign a signal to delete summary. The setting value of Modbus is 5 .

7. Ext 1

To assign a signal of Ext 1 . The setting value of Modbus is 6 . Ext 1 : External 1.

8. Ext 2

To assign a signal of Ext 2. The setting value of Modbus is 7. Ext 2 : External 2.
9. Metal

To assign a signal of Metal detection. The setting value of Modbus is 8 .

10. Air Pressure Error

To assign a signal of Air pressure error. The setting value of Modbus is 9 .

11. Bin Full

To assign a signal of Bin full. Bin full is the function to inform that discharge box (like hopper) is full capacity. The setting value of Modbus is 10.

12. Emergency Stop

To assign a signal of Emergency stop. When a signal of emergency stop is inputted, the conveyor is stop immediately. While a signal of emergency stop is inputted, the conveyor stops. The setting value of Modbus is 11 .

13. Reject Check

To assign a signal of "Reject check". The setting value of Modbus is 12.
"Reject check" is the function to inspect an error that weighing matter except target product passes using photo eye sensor that is placed at releasing side of the rejector on conveyor line. Timing chart of "Reject check" is shown below.

Mass wave form

Photo eye sensor
Timing of judgement

Release check

Drawing 84 Timing chart to confirm releasing
Example of timing chart is detected product to be judged as "over weight" using photo eye sensor of release side.
After weighing judgement, Hold time of length of product can be specified after delay time. If photo eye sensor of release side is from OFF to ON during inspection time, it is judged as releasing error.
In example, photo eye sensor of release check is held to ON because the conveyor stops. if "Reject confirmation" is assigned to DO and it is judged, DO is outputted during DO hold time after DO delay time.

Delay time T can be calculated using distance Ld from the end of conveyor to detection position of photo eye sensor and the conveyor velocity V .
T = Ld / V
Use as approximate value and adjust value using measurement.
Release check time t 1 is calculated using length of weighing belt Lv and conveyor velocity V . $\mathrm{t} 1=(\mathrm{Lv} \times 0.8) / \mathrm{V}$

In judgement of "Detect two", the inspection time t is calculated regard plural products as product length. If photo eye sensor of release check is ON longer than preset value during operation, it is judged as error of photo eye sensor, the conveyor stops and error is displayed.

14. Approve Check

To assign a signal of "Approve check". The setting value of Modbus is 13.
"Approve check" is the function to confirm that product passes correctly using photo eye sensor that is placed at release side in the regular direction on conveyor line.
Timing chart of "Approve check" is shown below.

Mass waveform

Photo eye sensor
Timing of judgement

Release check

Photo eye sensor of release check

DO output time

Drawing 85 Timing chart when (correct product) is passing
First timing chart is a sample that OK product does not pass correctly.
After weighing judgement, Hold time of length of product can be specified after delay time. If photo eye sensor of release check is not ON during inspection time, it is judged as passing error.

Mass waveform

Photo eye sensor
Timing of judgement

Release check

Product length check

Photo eye sensor of release check

DO output time

Detection of an error

Drawing 86 Timing chart when (long product) is passing

Second timing chart is a sample that OK product shades light of photo eye sensor longer than time of product length check. After weighing judgement, Hold time of length of product can be specified after delay time. If light of photo eye sensor is shaded longer than check time of product length, it is judged as passing error.
Check time of product length $t 2$ is calculated using length of product Lp and conveyor velocity V . $\mathrm{t} 2=(\mathrm{Lp} \times 1.5) / \mathrm{V}$

If "Reject confirmation" is assigned to DO and it is judged, DO is outputted during hold time after delay time. Judgement of "Delay time" and "detect two" are the same as "Release check".

Cautions

- "Detect two" cannot judge each product because judgement is one section.
- In stopped weighing and stable weighing, If first product is OK weighing product and second product is judged to "detect two", release of first product cannot confirm because both product is near place on conveyor during second product is weighed.

15. Reject + Approve

It is used when "Reject check" and "Approve check" are performed using one photo eye sensor.
Place the photo eye sensor at release side in regular direction on conveyor line.
The setting value of Modbus is 14 .

16. Photo Eye Sensor

To assign photo eye sensor. Chattering time is the same as time to prevent chattering.
The setting value of Modbus is 15 .

17. Forced Operation, DO1 to DO1 1

DO can use forced. The setting value on Modbus is 16 to 26 of DO1 in order.

9.18.3. Delay Time

Delay time of DI1 to DI11 are specifies.
This function uses when connected peripherals needs delay time.
Tune delay time so as to receive signal of peripherals within receiving time in DI timing chart.
DI assigned to "Reject check" is time from weighing judgement to "Reject check".

9.18.4. Chattering

Time to prevent chattering to DI1 to DI11 can be input.

9.19. DI Indicator

The DI indicator is the function to monitor input signals form peripherals.

Drawing 87 DI indicator window

1 DI Timer

The receiving time of DI can be specified.

2 Detect Two Timing

Time from shading of photo eye sensor of last weighing to shading of photo eye sensor of next weighing.
If judgement is except "Detect two", time (black) in left side of "Detect two" is updated.
If judgement is "Detect two", time (red) in right side of "Detect two" is updated.
If many "Detect two" occurs, check these timing and arrange the velocity etc.

3 Input

Each status of DI is not affected effect of delay time and is displayed at real time.
ON is . OFF is O .

4 Timing

Input timing displays time from the starting of receiving to input signal.
Timing to be affected effect of delay time is reflected to the input timing.
Input timing is reflected the timing affected by delay time.
If input timing is within receiving time, it is displayed with black characters.
If input timing is not within receiving time, it is displayed with red characters. Adjust input timing using delay time with considering variation of input signal.

The Adjustment of Input Timing

The procedure to adjust input timing is shown below.
Step 1. Operate the indicator and conveyor.
Step 2. If metal detection device is connected, put test piece on sample. Feed the sample (weighing product) on the conveyor.

Step 3. After sample enters on the infeed conveyor, an input timing is displayed.
When the input timing is black characters, it is correct input.
When the input timing is red characters, adjust it using delay time with considering variation of input signal. Confirm it once again.

9.20. Analog Out

The analog output OP-07 can install to option slot which is analog board to output weighing value and velocity data etc. using electric current and voltage. Refer to the "11.8. OP-07 Additional Analog Output Module".

9.20.1. Data Types

Data type for analog output can be specified either weight or velocity.

9.20.2. Output Format

Output format for analog output can be specified either current output or voltage output.

9.20.3. Low Voltage Standard

Low voltage standard of analog output can be specified from $0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}$.

9.20.4. High Voltage Standard

High voltage standard of analog output can be specified from 3 V to 10 V .

9.20.5. Low Voltage Output

Low voltage output of analog output can be set. When output data is value of low voltage, voltage of low voltage standard is outputted.

9.20.6. High Voltage Output

High voltage output of analog output can be set. When output data is value of high voltage, voltage of high voltage standard is outputted.

9.20.7. Low Current Standard

Low current standard of analog output can be specified from $4 \mathrm{~mA}, 5 \mathrm{~mA}, 6 \mathrm{~mA}$.

9.20.8. High Current Standard

High current standard of analog output can be specified from $18 \mathrm{~mA}, 19 \mathrm{~mA}, 20 \mathrm{~mA}$.

9.20.9. Low Current Output

Low current output of analog output can be set. When output data is value of low current, current of low current standard is outputted.

9.20.10. High Current Output

High current output of analog output can be set. When output data is value of high current, current of high current standard is outputted.

9.21. Device

Information of the indicator is displayed.

9.21.1. Model Name

Name of the indicator is displayed.

9.21.2. Serial Number

Serial number of the indicator is displayed.

9.21.3. GUI Software Version

Version of software installed in the display panel is displayed.

9.21.4. Weighing Software Version

Version of weighting software installed in the indicator is displayed.

9.21.5. Option Port 1 and 2

The information of option board installed in the indicator.

9.22. Date / Time

9.22.1. Date Set

Date (year, month, day) of the built-in clock can be adjusted.
Refer to the "6.2. Settings for Date and Time" for adjustment.

9.22.2. Time Set

Time (hour, minute, second) of the built-in clock can be adjusted.
Refer to the "6.2. Settings for Date and Time" for adjustment.

9.23. USB Flash Drive

9.23.1. USB Operation History

Select whether to output operation history when the USB flash drive is connected.

9.23.2. USB Weighing History

Select whether to output weighing history when the USB flash drive is connected.

9.24. Modbus

9.24.1. Modbus

The settings of Modbus communication.
If the settings is changed, restart the system to use new settings.
Refer to the "10.3. Communication Command of Modbus" for the details.
The settings is shown below.
1 Disable
Modbus is not used.
2 Modbus / RTU
Serial communication of Modbus can be used.

3 Modbus / TCP
TCP/IP communication of Modbus can be used.

9.24.2. Slave Address

Specify a slave address of the indicator for Modbus communication.

9.25. Output Format

Note

All characters is used ASCll code.

- : Space code, hexadecimal code 0×20.

Terminator <CR><LF> is added to the end of characters.
$<C R>:$ carriage return, $0 \times 0 \mathrm{D}$. $<L F>$: Line feed, $0 \times 0 \mathrm{~A}$.

1. Periodical Print

The periodical print format is consists total number, total judgement, A\&D format of data.
The periodical print format is a fixed 24 characters (excluding terminator).
Total number : 5 characters, total judgement : 2 characters, data format : 15 characters.
Output example

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	1	,	O	K	,	S	T	,	+	0	0	0	1	2	.	3	4	5		

Total number Judgement result
A\&D format
OK

HiHi limit

Hi limit

Lo limit

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :--- |
| 0 | 0 | 0 | 0 | 1 | , | L | O | , | S | T | , | + | 0 | 0 | 0 | 1 | 2 | . | 3 | 4 | 5 | | g |

LoLo limit

2 packages

Double product

1	2	-	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
*	*	,	*	*	*	,	U	S	,	*	*	,	*	*	*	*	*	*	*	*	*	*	-	

External NG1

	2		3	4	5	6	7	8	9	10			131	14			17			20			23	
	0		0	0	4		E	1		S						0								

External NG2

Material

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		20	21	22	23	
0		0	0	0	6	,	M	D	,	S	T	,	+	0	0	0	1	2	.	3	4	5	-	9

2. A\&D Format

Output format to be outputted only weighing value. This format is shown below. Timing of output can be specified at output mode.
Weighing data is 15 characters (excluding terminator <CR><LF>), fixed length.
There are two header to monitor situation of weighing value in first.
Weighing data has polarity. when data is 0 , polarity is positive.

Example

Stable

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
S	T	,	+	+	0	0	0	1	2	.	1	3	4	5	-

Unstable

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| U | S | , | + | 0 | 0 | 0 | 0 | 5 | . | 4 | 3 | 2 | - | g |

Positive over

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
O	L	,	+	9	9	9	9	9	9	9	E	+	1	9

Negative over

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O | L | , | - | 9 | 9 | 9 | 9 | 9 | 9 | 9 | E | + | 1 | 9 |

9.26. RS-232C

9.26.1. RS-232C Port

The settings of RS-232C communication are shown below.

1. Disable

It is the settings when RS-232C communication is not used.
2. Dump Print

It is the settings to use the dump printer.
3. Stream

It is the settings to output the current weighing value. The output interval is 200 ms .

4. Weighing Result

It is the settings to output weighing result when the weighing values have judged.
5. Product Change

It is the settings to read the product code using the bar code reader etc. and to change to matched product.

9.26.2. Output Mode

The output format of RS-232C communication is the settings below.

1. Cyclic Print

This mode is the settings to output using format of periodic printing.

2. A\&D Format

This mode is the settings to output using A\&D format.

9.26.3. Baud Rate

Baud rate of RS-232C communication is the settings below.
Baud rate : 2400, 4800, 9600, 19200, 38400, 57600, 115200 [bps]

9.26.4. Parity

Parity of RS-232C communication is the settings below.
Parity : None, Even or Odd

9.26.5. Stop Bit

Stop bit of RS-232C communication is the settings below.
Stop bit : 1 bit or 2 bit

9.26.6. Data Bit

Data length of RS-232C communication is the settings below.
Data length : 7 bit or 8 bit

9.27. RS-485

9.27.1. RS-485 Port

The settings of RS-485 communication is shown below.

1. Disable

It is the settings when RS-485 communication is not used.
2. Stream

It is the settings to output the current weighing value. The output interval is 200 ms .
3. Weighing Result

It is the settings to output weighing result when the weighing values have judged.

9.27.2. Output Mode

The output format of RS-485 communication is the settings below.

1. Cyclic Print

This mode is the settings to output using format of periodic printing.
2. A\&D Format

This mode is the settings to output using A\&D format.

9.27.3. Baud Rate

Baud rate of RS-485 communication is the settings below.
Baud rate : 2400, 4800, 9600, 19200, 38400, 57600, 115200 [bps]

9.27.4. Parity

Parity of RS-485 communication is the settings below.

9.27.5. Stop Bit

Stop bit of RS-485 communication is the settings below.
Stop bit : 1 bit or 2 bit

9.27.6. Data Bit

Data length of RS-485 communication is the settings below.
Data length : 7 bit or 8 bit

9.28. LAN

9.28.1. CL IP Address

IP address of wired LAN can be specified.
CL: Cabled.

9.28.2. CL Subnet Mask

Subnet mask of wired LAN can be specified.

9.28.3. CL Default Gateway

Default gateway of wired LAN can be specified.

9.28.4. WL Port

"Disable" or "Enable" of wireless LAN can be specified.
WL: Wireless.

9.28.5. WL IP Address

IP address of wireless LAN can be specified.

9.28.6. WL Password

Password of wireless LAN can be specified. Use 8 characters for password.

9.29. Monitor

- The indication using the monitor function on the AD-4412-CW are as follows :

Terminal status of control I/O.
Terminal status of OP-02 relay output.
Whole terminal status of OP-05 parallel I/O.
Voltage value of OP-07 analog output.
Communication data of RS-232C and RS-485. However, while Modbus RTU is specified, communication data of RS-485 becomes ineffective.

- If data rate of DI and DO is faster than refresh rate of the monitor, it may not indicate completely.
- Dl is displayed in real time that is not affected to delay time and chattering.
- Output voltage of the analog board may contain error against the indication value.

9.29.1. RS-232C

Received data and transmission data are displayed in order of a time series.
Leading 4 characters of data is used to identify either received data or transmission data.
(In case of transmission data, $<T x>$ is displayed. In case of received data, $<R x>$ is displayed.)
Regarding of received data, the following process is performed.

- If $<\mathrm{CR}>$ is received and next code is not <LF>, carriage return is performed.
- If $<\mathrm{LF}>$ is received,
- If transmission data is transmitted during receiving data.
- If control code except <CR><LF > is received, <.> is displayed.

Touch the "Clear" key ${ }^{*}$ 圈 to delete data on the text box.
<CR> : Carriage return. Hex code 0x0D.
<LF > : Line feed. Hex code 0x0A.
<.> : Period. Hex code 0x2E.

Drawing 88 RS-232C communication data

9.29.2. RS-485

Received data and transmission data are displayed in order of a time series.
Leading four characters of data is used to identify either received data or transmission data.
(In case of transmission data, $<T x>$ is displayed. In case of received data, $<R x>$ is displayed.)
Regarding of received data, carriage return is performed at the following process.

- If <CR> is received and next code is not <CR><LF>.
- If $<\mathrm{LF}>$ is received.
- If transmission data is transmitted during receiving data.
- If control code except <CR><LF > is received, <.> is displayed.

If Modbus RTU is specified, communication function of RS-485 becomes ineffective.
Touch the "Clear" key to delete data on the text box.
<CR> : Carriage return. Hex code 0x0D.
<LF > : Line feed. Hex code 0x0A.
<.> : Period. Hex code 0x2E.

Drawing 89 RS-485C communication data

9.29.3. Control I/O

Whole terminal status of the control I/O are displayed.
When a signal of DI or DO becomes to ON state, is displayed.
When a signal of DI or DO becomes to OFF state, O is displayed.

DI: Digital input DO : Digital output

Drawing 90 Control Input/Output

9.29.4. OP-02 Relay Output

Whole terminal status of the OP-02 relay output are displayed. When a signal of DO becomes to ON state, is displayed.

DO : Digital output
When a signal of DO becomes to OFF state, O is displayed.
If OP-02 relay output is not connected, message of connection state is displayed.

Drawing 91 Relay Output

9.29.5. OP-05 Parallel I/O

Whole terminal status of the OP-05 parallel I/O are displayed.
When a signal of DI or DO becomes to ON state, is displayed. DI : Digital input When a signal of DI or DO becomes to OFF state, O is displayed. DO : Digital output If OP-05 parallel I/O is not connected, message of connection state is displayed.

Drawing 92 Parallel Input/Output

9.29.6. OP-07 Analog Output

Voltage output value of OP-07 analog output is displayed.
Output voltage may contain error against the indication value.
If OP-07 analog output or OP-17 analog output is not connected, message of connection state is displayed.

Drawing 93 Analog Output

10. Modbus Communication

Modbus is a communications protocol developed by Modicon.
If this device uses modbus, it can communicate with other devices equipped with modbus without special programs.
This indicator can use Modbus RTU (of serial communication using RS-485) and Modbus TCP (of serial communication expanded to TCP/IP).
Modbus communication can perform to change the settings, to read summary data, to write to DI, to read DO status and etc.
Refer to the "10.1. Using Modbus RTU" to "10.6. Communication Command of Modbus TCP".

Cautions

1. The product settings selected for weighing can be changed only via Modbus communication.
2. When group numbers or product numbers are changed, applicable product will be read. If applicable product is nothing, new registration will be performed and new settings will be read.
3. If the number of the product and etc. are changed via Modbus communication, the changes needs for several seconds.
4. In Modbus communication, the simultaneity and real time are not guaranteed.

For example, when the whole data of address map are read, the whole data cannot be read at the same time. It may depend used systems and commands. Additionally, the weighing result may not include all weighing data.
5. When address is specified in Modbus communication, specify an address value subtract 1 from value of the "10.5. Address", except reference number.

Note

- When data is written to the holding register via Modbus communication, the information bar blinks on the upper side of the window.
- Refer to the "8.2. Connecting the LAN interface" and "11.3. RS-485"for using Modbus RTU and Modbus TCP.
- When Modbus TCP is used on the indicator, the settings of LAN interface needs.

Refer to the "6.3. Setting up LAN interface" for the settings procedure.

10.1. Using Modbus RTU

Step 1. Touch the "Connection" tab in the Common setting window. Select "Modbus RTU" in the "Modbus".

Cautions

- Restart the indicator when the settings of the "Modbus" is changed.

New settings will be effective after restarting system.

- When the "Modbus RTU" is specified to the settings of the "Modbus", the "RS-485" settings of port number and output format are ignored, the "RS-485" settings of baud rate, parity and stop bit are effective. (Length of data bit is a fixed 8 bits.)

Step 2. Input a slave address.
Step 3. Enter the settings of RS-485 at the "Connect" tab in the "Common settings window".

Cautions

- Refer to the "9.24. Modbus" for serial communication settings

Step 4. The indicator can communicate with serial interface connected.

Drawing 94 Communication mode

10.2. Using Modbus TCP

Step 1. Touch the "Connection" tab in the Common setting window.
Select "Modbus TCP" in the "Modbus".

Cautions

- Restart the indicator when the settings of the "Modbus" is changed.

New settings will be effective after restarting system.
Step 2. Select and input a slave address.
Step 3. The indicator can communicate with LAN cable connected.

10.3. Communication Command of Modbus

This section describes the commands of Modbus communication.
For example, the reading of the input register and the writing to the holding register are described.

Cautions

- Examples uses Modbus RTU.

Refer to documentations of the Modbus TCP protocol for commands.

10.3.1. Example of Reading Input Register

Example is to read total number (address 20045) of all summary in the input register.

Transmission Command

The transmission command consists of start address of the input register and number of the input register to read data.
When total number of all summary is read from the input register, specify an address 44 subtract 1 from value of the "10.5. Address" , except reference number.
Specify 2 to number of the input register because total number of all summary is 4 byte.
Example of transmission command is shown as table below.
Table 8 Example of transmission command (Reading input register)

Command description	Transmission data	
Slave address	0×01	
Function code	0×04	
Start address	(high-order)	0×00
Start address	(low-order)	$0 \times 2 \mathrm{C}$
Number of register	(high-order)	0×00
Number of register	(low-order)	0×02
Error check	CRC $(16$ bits)	

Response

Example of the response when command is processed properly is shown as table below.
Table 9 Example of response (Reading input register)

Command description	
Slave address	Response data
Function code	0×01
Number of data in bytes	0×04
Data 1	0x04
Data 1	(high-order)
Data 2	(low-order)
Data 2	(high-order)
Error check	0x00

10.3.2. Example of Writing Holding Register

Example is to write product number (address 40001) in the holding register.

Transmission Command

The transmission command consists of start address of the holding register and data overwritten.
When product number is written to the holding register, specify an address 0 subtract 1 from value of the " 10.5 . Address", except reference number. Specify product number as 2.
Example of transmission command is shown as table below.
Table 10 Example of transmission command (Writing to holding register)

Command description		Transmission data
Slave address	0×01	
Function code	0×06	
Start address	(high-order)	0×00
Start address	(low-order)	0×00
Number of register	(high-order)	0×00
Number of register	(low-order)	0×02
Error check	CRC (16 bits)	

Response

When command is processed properly, the response is the same as transmission command. The response is shown as table below.

Table 11 Example of response (Writing to holding register)

Command description		Response data
Slave address	0×01	
Function code	(high-order)	0×06
Start address	(low-order)	0×00
Start address	(high-order)	0×00
Number of register	(low-order)	0×02
Number of register	CRC $(16$ bits)	
Error check		

10.3.3. Example of Exception Response

When the indicator receives command that cannot processed in Modbus communication, an exception is responded. Address of "out of range (Address 30130)" of the input register is read.

Transmission Command

Example of transmission command to address 30130 is shown as table below.
Table 12 Example of transmission command (Reading input register / Out of range)

Command description		Transmission data
Slave address	0×01	
Function code	(high-order)	0×04
Start address	(low-order)	0×82
Start address	(high-order)	0×00
Number of register	(low-order)	0×01
Number of register	CRC (16 bits)	
Error check		

Response

Because the address 30130 of the input register doesn't exist, the exception response like an example table below is shown. The function code of exception response is value added 0×80 to code of transmission command.
Table 13 Example of response (Reading input register / Out of range)

Command description	Response data
Slave address	0×01
Function code	0×84
Exception code	0×02
Error check	CRC (16 bits)

Exception code and its contents are shown below.

Table 14 Exception code

Exception code	Name	Description
01	Wrong function	The corresponding function is not compatible.
02	Wrong data address	The specified address does not exist.
03	Wrong data	The specified data is not allowed.

10.4. Reference Number

The command to the indicator and reading of data use "reference number" and "address" in Modbus communication.
The type of data and reference number are show Table 15.
Table 15 Reference number

Data type	Reference number	\quad Data description
Output coil	0	It is dedicated bit to write data. It is used for control of DI1 to DI4.
Input status	1	It is dedicated bit to read data. It is used for monitor of DI and DO.
Input register	3	It is dedicated word data to read. It is used to read weighing value and summary.
Holding register	4	It is word data to able to read and write. It is used to change the settings and to read product settings.

10.5. Address

Address of Modbus is listed from Table 17 to Table 19.
Table 16 Output coil address

Address	Name
1	DI1
2	DI2
3	DI3
4	DI4
5	DI5
6	DI6
7	DI7
8	DI8
9	DI9
10	DI10
11	DI11
12	DI12
13	DI13
14	DI14
15	DI15
16	DI16
17	DI17
18	DI18
19	DI19
20	DI20
21	DI21
22	DI22

Address	Name
23	DI 23
24	DI 24
25	DI 25
26	DI 26
27	DI 27
28	DI 28
29	DI 29
30	DI 30
31	DI 31
32	DI 32
33	DI 33
34	DI 34
35	DI 35
36	DI 36
37	DI 37
38	DI 38
39	DI 39
40	DI 40
41	DI 41
42	DI 42
43	DI 43

Address	Name	
1	DI 1	(The status of DI 1 is indicated.)
2	DI 2	(The status of DI 2 is indicated.)
3	DI 3	(The status of DI 3 is indicated.)
4	DI 4	(The status of DI 4 is indicated.)
5	DI 5	(The status of DI 5 is indicated.)
6	DI 6	(The status of DI 6 is indicated.)
7	DI 7	(The status of DI 7 is indicated.)
8	DI 8	(The status of DI 8 is indicated.)
9	DI 9	(The status of DI 9 is indicated.)
10	DI 10	(The status of DI 10 is indicated.)
11	DI 11	(The status of DI 11 is indicated.)
12	DI 12	(The status of DI 12 is indicated.)
13	DI 13	(The status of DI 13 is indicated.)
14	DI 14	(The status of DI 14 is indicated.)
15	DI 15	(The status of DI 15 is indicated.)
16	DI 16	(The status of DI 16 is indicated.)
17	DI 17	(The status of DI 17 is indicated.)
18	DI 18	(The status of DI 18 is indicated.)
19	DI 19	(The status of DI 19 is indicated.)
20	DI 20	(The status of DI 20 is indicated.)
21	DI 21	(The status of DI 21 is indicated.)
22	DI 22	(The status of DI 22 is indicated.)
23	DI 23	(The status of DI 23 is indicated.)
24	DI 24	(The status of DI 24 is indicated.)
25	DI 25	(The status of DI 25 is indicated.)
26	DI 26	(The status of DI 26 is indicated.)
27	DI 27	(The status of DI 27 is indicated.)
28	DI 28	(The status of DI 28 is indicated.)
29	DI 29	(The status of DI 29 is indicated.)
30	DI 30	(The status of DI 30 is indicated.)
31	DI 31	(The status of DI 31 is indicated.)
32	DI 32	(The status of DI 32 is indicated.)
33	DI 33	(The status of DI 33 is indicated.)
34	DI 34	(The status of DI 34 is indicated.)
35	DI 35	(The status of DI 35 is indicated.)
36	DI 36	(The status of DI 36 is indicated.)
37	DI 37	(The status of DI 37 is indicated.)
38	DI 38	(The status of DI 38 is indicated.)
39	DI 39	(The status of DI 39 is indicated.)
40	DI 40	(The status of DI 40 is indicated.)
41	DI 41	(The status of DI 41 is indicated.)
42	DI 42	(The status of DI 42 is indicated.)
43	DI 43	(The status of DI 43 is indicated.)

Input status 2/5

※ Status of DI 1 to DI 43
Operation status of DI 1 to DI 43 are indicated. Each DI is assigned to hardware and the output coil of Modbus simultaneously. DI status indicates both operation status.

Input status 3/5

Address	Name		
84	DI Status 20	(The status of function assigned to DI 20 is indicated.)	*
85	DI Status 21	(The status of function assigned to DI 21 is indicated.)	\%
86	DI Status 22	(The status of function assigned to DI 22 is indicated.)	\%
87	DI Status 23	(The status of function assigned to DI 23 is indicated.)	\%
88	DI Status 24	(The status of function assigned to DI 24 is indicated.)	※
89	DI Status 25	(The status of function assigned to DI 25 is indicated.)	\%
90	DI Status 26	(The status of function assigned to DI 26 is indicated.)	\%
91	DI Status 27	(The status of function assigned to DI 27 is indicated.)	\%
92	DI Status 28	(The status of function assigned to DI 28 is indicated.)	※
93	DI Status 29	(The status of function assigned to DI 29 is indicated.)	※
94	DI Status 30	(The status of function assigned to DI 30 is indicated.)	\%
95	DI Status 31	(The status of function assigned to DI 31 is indicated.)	\%
96	DI Status 32	(The status of function assigned to DI 32 is indicated.)	※
97	DI Status 33	(The status of function assigned to DI 33 is indicated.)	※
98	DI Status 34	(The status of function assigned to DI 34 is indicated.)	\%
99	DI Status 35	(The status of function assigned to DI 35 is indicated.)	*
100	DI Status 36	(The status of function assigned to DI 36 is indicated.)	※
101	DI Status 37	(The status of function assigned to DI 37 is indicated.)	※
102	DI Status 38	(The status of function assigned to DI 38 is indicated.)	*
103	DI Status 39	(The status of function assigned to DI 39 is indicated.)	\%
104	DI Status 40	(The status of function assigned to DI 40 is indicated.)	\%
105	DI Status 41	(The status of function assigned to DI 41 is indicated.)	*
106	DI Status 42	(The status of function assigned to DI 42 is indicated.)	\%
107	DI Status 43	(The status of function assigned to DI 43 is indicated.)	※

※ Status of DI 1 to DI 43
Operation status of DI 1 to DI 43 are indicated. Each DI is assigned to hardware and the output coil of Modbus simultaneously. DI status indicates both operation status.

Input status 4/5

Address	Name
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	Do not use address because of reserved expansion number.
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	DO STOP
130	DO BZ
131	DO 1
132	DO 2
133	DO 3
134	DO 4
135	DO 5
136	DO 6
137	DO 7
138	DO 8
139	DO 9
140	DO 10
141	DO 11
142	DO 12
143	DO 13
144	DO 14
145	DO 15
146	DO 16
147	DO 17
148	DO 18
149	DO 19
150	DO 20
151	DO 21

Input status 5/5

Input register 1/5

Address	Name		Size	Output range
1	IP address 1 of wired LAN for this indicator	(high-order)	2 bytes	0-255
2	IP address 2 of wired LAN for this indicator		2 bytes	0-255
3	IP address 3 of wired LAN for this indicator		2 bytes	0-255
4	IP address 4 of wired LAN for this indicator	(low-order)	2 bytes	0-255
5	Subnet mask 1 of this indicator	(high-order)	2 bytes	0-255
6	Subnet mask 2 of this indicator		2 bytes	0-255
7	Subnet mask 3 of this indicator		2 bytes	0-255
8	Subnet mask 4 of this indicator	(low-order)	2 bytes	0-255
9	Default gateway 1 of this indicator	(high-order)	2 bytes	0-255
10	Default gateway 2 of this indicator		2 bytes	0-255
11	Default gateway 3 of this indicator		2 bytes	0-255
12	Default gateway 4 of this indicator	(low-order)	2 bytes	0-255
13	Wireless LAN port		2 bytes	0-1
14	IP address 1 of wireless LAN for this indicator	(high-order)	2 bytes	0-255
15	IP address 2 of wireless LAN for this indicator		2 bytes	0-255
16	IP address 3 of wireless LAN for this indicator		2 bytes	0-255
17	IP address 4 of wireless LAN for this indicator	(low-order)	2 bytes	0-255
18	Do not use address because of reserved expansion number.			
19	IP address 1 for printer	(high-order)	2 bytes	0-255
20	IP address 2 for printer		2 bytes	0-255
21	IP address 3 for printer		2 bytes	0-255
22	IP address 4 for printer	(low-order)	2 bytes	0-255
23	RS-232C Port number		2 bytes	0-4
24	RS-232C Output mode		2 bytes	0-2
25	RS-232C Baud rate		2 bytes	0-5
26	RS-232C Parity		2 bytes	0-2
27	RS-232C Data length		2 bytes	0-1
28	RS-232C Stop bit		2 bytes	0-1
29	RS-485 Port number		2 bytes	0-2
30	RS-485 Output mode		2 bytes	0-2
31	RS-485 Baud rate		2 bytes	0-5
32	RS-485 Parity		2 bytes	0-2
33	RS-485 Data length		2 bytes	0-1
34	RS-485 Stop bit		2 bytes	0-1
35	Modbus Settings		2 bytes	0-1
36	Modbus Slave address		2 bytes	1-247
37	Random check		2 bytes	0-1
38	Unit		2 bytes	0-3
39	User management level		2 bytes	0-3
40	Conveyor mode		2 bytes	0-1
41	Type of Data 1-1ch		2 bytes	0-1
42	Type of Data 1-2ch		2 bytes	0-1
43	Type of Data 1-3ch		2 bytes	0-1
44	Type of Data 1-4ch		2 bytes	0-1

Input register 2/5

Address	Name		Size	Output range
45	Type of Data 2-1ch		2 bytes	0-1
46	Type of Data 2-2ch		2 bytes	0-1
47	Type of Data 2-3ch		2 bytes	0-1
48	Type of Data 2-4ch		2 bytes	0-1
49	Output format 1-1ch		2 bytes	0-1
50	Output format 1-2ch		2 bytes	0-1
51	Output format 1-3ch		2 bytes	0-1
52	Output format 1-4ch		2 bytes	0-1
53	Output format 2-1ch		2 bytes	0-1
54	Output format 2-2ch		2 bytes	0-1
55	Output format 2-3ch		2 bytes	0-1
56	Output format 2-4ch		2 bytes	0-1
57	Low current standard	1-1ch	2 bytes	0-2
58	Low current standard	1-2ch	2 bytes	0-2
59	Low current standard	1-3ch	2 bytes	0-2
60	Low current standard	1-4ch	2 bytes	0-2
61	Low current standard	2-1ch	2 bytes	0-2
62	Low current standard	2-2ch	2 bytes	0-2
63	Low current standard	2-3ch	2 bytes	0-2
64	Low current standard	2-4ch	2 bytes	0-2
65	High current standard	1-1ch	2 bytes	0-2
66	High current standard	1-2ch	2 bytes	0-2
67	High current standard	1-3ch	2 bytes	0-2
68	High current standard	1-4ch	2 bytes	0-2
69	High current standard	2-1ch	2 bytes	0-2
70	High current standard	2-2ch	2 bytes	0-2
71	High current standard	2-3ch	2 bytes	0-2
72	High current standard	2-4ch	2 bytes	0-2
73	Low current output of weight	1-1ch	4 bytes	
75	Low current output of weight	1-2ch	4 bytes	
77	Low current output of weight	1-3ch	4 bytes	
79	Low current output of weight	1-4ch	4 bytes	
81	Low current output of weight	2-1ch	4 bytes	
83	Low current output of weight	2-2ch	4 bytes	
85	Low current output of weight	2-3ch	4 bytes	
87	Low current output of weight	2-4ch	4 bytes	
89	High current output of weight	1-1ch	4 bytes	
91	High current outpu of weightt	1-2ch	4 bytes	
93	High current output of weight	1-3ch	4 bytes	
95	High current output of weight	1-4ch	4 bytes	
97	High current output of weight	2-1ch	4 bytes	
99	High current output of weight	2-2ch	4 bytes	
101	High current output of weight	2-3ch	4 bytes	
103	High current output of weight	2-4ch	4 bytes	

Input register 3/5

| Address | | Name | Size |
| ---: | :--- | :--- | :--- | Output range

Input register 4/5

Input register 5/5

| Address | | Name | Size | Output range |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 231 | OK summary | Range | 4 bytes | $0-9999.9999$ |
| 233 | OK summary | SD (Standard deviation) | 4 bytes | $0-1.00000$ |
| 235 | OK summary | CV (Coefficient of variation) | 2 bytes | $0-99.99$ |
| 236 | Sample summary | Total number | 4 bytes | $0-9999999$ |
| 238 | Sample summary | Number of OK items | 4 bytes | $0-9999999$ |
| 240 | Sample summary | Number of HiHi | 4 bytes | $0-9999999$ |
| 242 | Sample summary | Number of Hi | 4 bytes | $0-9999999$ |
| 244 | Sample summary | Number of LoLo | 4 bytes | $0-9999999$ |
| 246 | Sample summary | Number of Lo | 4 bytes | $0-9999999$ |
| 248 | Sample summary | Number of detect two | 4 bytes | $0-9999999$ |
| 250 | Sample summary | Number of unsplit | 4 bytes | $0-9999999$ |
| 252 | Sample summary | Number of foreign matter | 4 bytes | $0-9999999$ |
| 254 | Sample summary | Total weight (Gross value) | 4 bytes | $0-9999.999$ |
| 256 | Sample summary | Averaged weighing value | 4 bytes | $0-9999.999$ |
| 258 | Sample summary | Maximum value | 4 bytes | $0-9999.999$ |
| 260 | Sample summary | Minimum value | 4 bytes | $0-9999.999$ |
| 262 | Sample summary | Range | 4 bytes | $0-9999.999$ |
| 264 | Sample summary | SD (Standard deviation) | 4 bytes | $0-1.00000$ |
| 266 | Sample summary | CV (Coefficient of variation) | 2 bytes | $0-99.99$ |
| 267 | OK sample summary | Total number | 4 bytes | $0-9999999$ |
| 269 | OK sample summary | Total weight (Gross value) | 4 bytes | $0-9999.9999$ |
| 271 | OK sample summary | Averaged weighing value | 4 bytes | $0-9999.9999$ |
| 273 | OK sample summary | Maximum value | 4 bytes | $0-9999.9999$ |
| 275 | OK sample summary | Minimum value | 4 bytes | $0-9999.9999$ |
| 277 | OK sample summary | Range | 4 bytes | $0-9999.9999$ |
| 279 | OK sample summary | SD (Standard deviation) | 4 bytes | $0-1.00000$ |
| 281 | OK sample summary | CV (Coefficient of variation) | 2 bytes | $0-99.99$ |
| 282 | Weighing result | | 4 bytes | $0-9999.9999$ |

Holding register 1/13

Address	Name		Size	Output range
1	Product number		2 bytes	1-100
2	Group number		2 bytes	1-10
3	Language		2 bytes	0-3
4	Transition time to standby mode		2 bytes	0.0-999.9
5	Settings of DI 1	(Map)	4 bytes	0-1024
7	Settings of DI 2	(Map)	4 bytes	0-1024
9	Settings of DI 3	(Map)	4 bytes	0-1024
11	Settings of DI 4	(Map)	4 bytes	0-1024
13	Settings of DI 5	(Map)	4 bytes	0-1024
15	Settings of DI 6	(Map)	4 bytes	0-1024
17	Settings of DI 7	(Map)	4 bytes	0-1024
19	Settings of DI 8	(Map)	4 bytes	0-1024
21	Settings of DI 9	(Map)	4 bytes	0-1024
23	Settings of DI 10	(Map)	4 bytes	0-1024
25	Settings of DI 11	(Map)	4 bytes	0-1024
27	Settings of DI 12	(Map)	4 bytes	0-1024
29	Settings of DI 13	(Map)	4 bytes	0-1024
31	Settings of DI 14	(Map)	4 bytes	0-1024
33	Settings of DI 15	(Map)	4 bytes	0-1024
35	Settings of DI 16	(Map)	4 bytes	0-1024
37	Settings of DI 17	(Map)	4 bytes	0-1024
39	Settings of DI 18	(Map)	4 bytes	0-1024
41	Settings of DI 19	(Map)	4 bytes	0-1024
43	Settings of DI 20	(Map)	4 bytes	0-1024
45	Settings of DI 21	(Map)	4 bytes	0-1024
47	Settings of DI 22	(Map)	4 bytes	0-1024
49	Settings of DI 23	(Map)	4 bytes	0-1024
51	Settings of DI 24	(Map)	4 bytes	0-1024
53	Settings of DI 25	(Map)	4 bytes	0-1024
55	Settings of DI 26	(Map)	4 bytes	0-1024
57	Settings of DI 27	(Map)	4 bytes	0-1024
59	Settings of DI 28	(Map)	4 bytes	0-1024
61	Settings of DI 29	(Map)	4 bytes	0-1024
63	Settings of DI 30	(Map)	4 bytes	0-1024
65	Settings of DI 31	(Map)	4 bytes	0-1024
67	Settings of DI 32	(Map)	4 bytes	0-1024
69	Settings of DI 33	(Map)	4 bytes	0-1024
71	Settings of DI 34	(Map)	4 bytes	0-1024
73	Settings of DI 35	(Map)	4 bytes	0-1024
75	Settings of DI 36	(Map)	4 bytes	0-1024
77	Settings of DI 37	(Map)	4 bytes	0-1024
79	Settings of DI 38	(Map)	4 bytes	0-1024
81	Settings of DI 39	(Map)	4 bytes	0-1024

Holding register $2 / 13$

Address	Name	Size	Output range
83	Settings of DI 40 (Map)	4 bytes	0-1024
85	Settings of DI 41 (Map)	4 bytes	0-1024
87	Settings of DI 42 (Map)	4 bytes	0-1024
89	Settings of DI 43 (Map)	4 bytes	0-1024
91	Input trigger of DI 1	2 bytes	0-4
92	Input trigger of DI 2	2 bytes	0-4
93	Input trigger of DI 3	2 bytes	0-4
94	Input trigger of DI 4	2 bytes	0-4
95	Input trigger of DI 5	2 bytes	0-4
96	Input trigger of DI 6	2 bytes	0-4
97	Input trigger of DI 7	2 bytes	0-4
98	Input trigger of DI 8	2 bytes	0-4
99	Input trigger of DI 9	2 bytes	0-4
100	Input trigger of DI 10	2 bytes	0-4
101	Input trigger of DI 11	2 bytes	0-4
102	Input trigger of DI 12	2 bytes	0-4
103	Input trigger of DI 13	2 bytes	0-4
104	Input trigger of DI 14	2 bytes	0-4
105	Input trigger of DI 15	2 bytes	0-4
106	Input trigger of DI 16	2 bytes	0-4
107	Input trigger of DI 17	2 bytes	0-4
108	Input trigger of DI 18	2 bytes	0-4
109	Input trigger of DI 19	2 bytes	0-4
110	Input trigger of DI 20	2 bytes	0-4
111	Input trigger of DI 21	2 bytes	0-4
112	Input trigger of DI 22	2 bytes	0-4
113	Input trigger of DI 23	2 bytes	0-4
114	Input trigger of DI 24	2 bytes	0-4
115	Input trigger of DI 25	2 bytes	0-4
116	Input trigger of DI 26	2 bytes	0-4
117	Input trigger of DI 27	2 bytes	0-4
118	Input trigger of DI 28	2 bytes	0-4
119	Input trigger of DI 29	2 bytes	0-4
120	Input trigger of DI 30	2 bytes	0-4
121	Input trigger of DI 31	2 bytes	0-4
122	Input trigger of DI 32	2 bytes	0-4
123	Input trigger of DI 33	2 bytes	0-4
124	Input trigger of DI 34	2 bytes	0-4
125	Input trigger of DI 35	2 bytes	0-4
126	Input trigger of DI 36	2 bytes	0-4
127	Input trigger of DI 37	2 bytes	0-4
128	Input trigger of DI 38	2 bytes	0-4
129	Input trigger of DI 39	2 bytes	0-4
130	Input trigger of DI 40	2 bytes	0-4

Holding register $3 / 13$

Address	Name	Size	Output range
131	Input trigger of DI 41	2 bytes	0-4
132	Input trigger of DI 42	2 bytes	0-4
133	Input trigger of DI 43	2 bytes	0-4
134	Configuration of DI 1	2 bytes	0-25
135	Configuration of DI 2	2 bytes	0-25
136	Configuration of DI 3	2 bytes	0-25
137	Configuration of DI 4	2 bytes	0-25
138	Configuration of DI 5	2 bytes	0-25
139	Configuration of DI 6	2 bytes	0-25
140	Configuration of DI 7	2 bytes	0-25
141	Configuration of DI 8	2 bytes	0-25
142	Configuration of DI 9	2 bytes	0-25
143	Configuration of DI 10	2 bytes	0-25
144	Configuration of DI 11	2 bytes	0-25
145	Configuration of DI 12	2 bytes	0-25
146	Configuration of DI 13	2 bytes	0-25
147	Configuration of DI 14	2 bytes	0-25
148	Configuration of DI 15	2 bytes	0-25
149	Configuration of DI 16	2 bytes	0-25
150	Configuration of DI 17	2 bytes	0-25
151	Configuration of DI 18	2 bytes	0-25
152	Configuration of DI 19	2 bytes	0-25
153	Configuration of DI 20	2 bytes	0-25
154	Configuration of DI 21	2 bytes	0-25
155	Configuration of DI 22	2 bytes	0-25
156	Configuration of DI 23	2 bytes	0-25
157	Configuration of DI 24	2 bytes	0-25
158	Configuration of DI 25	2 bytes	0-25
159	Configuration of DI 26	2 bytes	0-25
160	Configuration of DI 27	2 bytes	0-25
161	Configuration of DI 28	2 bytes	0-25
162	Configuration of DI 29	2 bytes	0-25
163	Configuration of DI 30	2 bytes	0-25
164	Configuration of DI 31	2 bytes	0-25
165	Configuration of DI 32	2 bytes	0-25
166	Configuration of DI 33	2 bytes	0-25
167	Configuration of DI 34	2 bytes	0-25
168	Configuration of DI 35	2 bytes	0-25
169	Configuration of DI 36	2 bytes	0-25
170	Configuration of DI 37	2 bytes	0-25
171	Configuration of DI 38	2 bytes	0-25
172	Configuration of DI 39	2 bytes	0-25
173	Configuration of DI 40	2 bytes	0-25
174	Configuration of DI 41	2 bytes	0-25

Holding register 4/13

Address		Size	Output range
175	Configuration of DI 42	2 bytes	$0-25$
176	Configuration of DI 43	2 bytes	$0-25$
177	Chattering of DI 1	2 bytes	$0.00-99.99$
178	Chattering of DI 2	2 bytes	$0.00-99.99$
179	Chattering of DI 3	2 bytes	$0.00-99.99$
180	Chattering of DI 4	2 bytes	$0.00-99.99$
181	Chattering of DI 5	2 bytes	$0.00-99.99$
182	Chattering of DI 6	2 bytes	$0.00-99.99$
183	Chattering of DI 7	2 bytes	$0.00-99.99$
184	Chattering of DI 8	2 bytes	$0.00-99.99$
185	Chattering of DI 9	2 bytes	$0.00-99.99$
186	Chattering of DI 10	2 bytes	$0.00-99.99$
187	Chattering of DI 11	2 bytes	$0.00-99.99$
188	Chattering of DI 12	2 bytes	$0.00-99.99$
189	Chattering of DI 13	2 bytes	$0.00-99.99$
190	Chattering of DI 14	2 bytes	$0.00-99.99$
191	Chattering of DI 15	2 bytes	$0.00-99.99$
192	Chattering of DI 16	2 bytes	$0.00-99.99$
193	Chattering of DI 17	2 bytes	$0.00-99.99$
194	Chattering of DI 18	2 bytes	$0.00-99.99$
195	Chattering of DI 19	2 bytes	$0.00-99.99$
196	Chattering of DI 20	2 bytes	$0.00-99.99$
197	Chattering of DI 21	2 bytes	$0.00-99.99$
198	Chattering of DI 22	2 bytes	$0.00-99.99$
199	Chattering of DI 23	2 bytes	$0.00-99.99$
200	Chattering of DI 24	2 bytes	$0.00-99.99$
201	Chattering of DI 25	2 bytes	$0.00-99.99$
202	Chattering of DI 26	2 bytes	$0.00-99.99$
203	Chattering of DI 27	2 bytes	$0.00-99.99$
204	Chattering of DI 28	2 bytes	$0.00-99.99$
205	Chattering of DI 29	2 bytes	$0.00-99.99$
206	Chattering of DI 30	2 bytes	$0.00-99.99$
207	Chattering of DI 31	2 bytes	$0.00-99.99$
208	Chattering of DI 32	2 bytes	$0.00-99.99$
209	Chattering of DI 33	2 bytes	$0.00-99.99$
210	Chattering of DI 34	2 bytes	$0.00-99.99$
211	Chattering of DI 35	2 bytes	$0.00-99.99$
212	Chattering of DI 36	2 bytes	$0.00-99.99$
213	Chattering of DI 37	$0.00-99.99$	
214	Chattering of DI 38	2 bytes	$0.00-99.99$
215	Chattering of DI 39	2 bytes	$0.00-99.99$
216	Chattering of DI 40	$0.00-99.99$	
217	Chattering of DI 41	29.99	
218	Chattering of DI 42	2009	

Holding register $5 / 13$

Address	Name	Size	Output range
219	Chattering of DI 43	2 bytes	0.00-99.99
220	Delay time of DI 1	2 bytes	0.00-99.99
221	Delay time of DI 2	2 bytes	0.00-99.99
222	Delay time of DI 3	2 bytes	0.00-99.99
223	Delay time of DI 4	2 bytes	0.00-99.99
224	Delay time of DI 5	2 bytes	0.00-99.99
225	Delay time of DI 6	2 bytes	0.00-99.99
226	Delay time of DI 7	2 bytes	0.00-99.99
227	Delay time of DI 8	2 bytes	0.00-99.99
228	Delay time of DI 9	2 bytes	0.00-99.99
229	Delay time of DI 10	2 bytes	0.00-99.99
230	Delay time of DI 11	2 bytes	0.00-99.99
231	Delay time of DI 12	2 bytes	0.00-99.99
232	Delay time of DI 13	2 bytes	0.00-99.99
233	Delay time of DI 14	2 bytes	0.00-99.99
234	Delay time of DI 15	2 bytes	0.00-99.99
235	Delay time of DI 16	2 bytes	0.00-99.99
236	Delay time of DI 17	2 bytes	0.00-99.99
237	Delay time of DI 18	2 bytes	0.00-99.99
238	Delay time of DI 19	2 bytes	0.00-99.99
239	Delay time of DI 20	2 bytes	0.00-99.99
240	Delay time of DI 21	2 bytes	0.00-99.99
241	Delay time of DI 22	2 bytes	0.00-99.99
242	Delay time of DI 23	2 bytes	0.00-99.99
243	Delay time of DI 24	2 bytes	0.00-99.99
244	Delay time of DI 25	2 bytes	0.00-99.99
245	Delay time of DI 26	2 bytes	0.00-99.99
246	Delay time of DI 27	2 bytes	0.00-99.99
247	Delay time of DI 28	2 bytes	0.00-99.99
248	Delay time of DI 29	2 bytes	0.00-99.99
249	Delay time of DI 30	2 bytes	0.00-99.99
250	Delay time of DI 31	2 bytes	0.00-99.99
251	Delay time of DI 32	2 bytes	0.00-99.99
252	Delay time of DI 33	2 bytes	0.00-99.99
253	Delay time of DI 34	2 bytes	0.00-99.99
254	Delay time of DI 35	2 bytes	0.00-99.99
255	Delay time of DI 36	2 bytes	0.00-99.99
256	Delay time of DI 37	2 bytes	0.00-99.99
257	Delay time of DI 38	2 bytes	0.00-99.99
258	Delay time of DI 39	2 bytes	0.00-99.99
259	Delay time of DI 40	2 bytes	0.00-99.99
260	Delay time of DI 41	2 bytes	0.00-99.99
261	Delay time of DI 42	2 bytes	0.00-99.99
262	Delay time of DI 43	2 bytes	0.00-99.99

Holding register 6/13

Address		Name	Size	Output range
263	Setting of stop	High order	4 bytes	0-4294967296
265	Setting of stop	Low order	4 bytes	0-4294967296
267	Setting of DO BZ	High order	4 bytes	0-4294967296
269	Setting of DO BZ	Low order	4 bytes	0-4294967296
271	Setting of DO 1	High order	4 bytes	0-4294967296
273	Setting of DO 1	Low order	4 bytes	0-4294967296
275	Setting of DO 2	High order	4 bytes	0-4294967296
277	Setting of DO 2	Low order	4 bytes	0-4294967296
279	Setting of DO 3	High order	4 bytes	0-4294967296
281	Setting of DO 3	Low order	4 bytes	0-4294967296
283	Setting of DO 4	High order	4 bytes	0-4294967296
285	Setting of DO 4	Low order	4 bytes	0-4294967296
287	Setting of DO 5	High order	4 bytes	0-4294967296
289	Setting of DO 5	Low order	4 bytes	0-4294967296
291	Setting of DO 6	High order	4 bytes	0-4294967296
293	Setting of DO 6	Low order	4 bytes	0-4294967296
295	Setting of DO 7	High order	4 bytes	0-4294967296
297	Setting of DO 7	Low order	4 bytes	0-4294967296
299	Setting of DO 8	High order	4 bytes	0-4294967296
301	Setting of DO 8	Low order	4 bytes	0-4294967296
303	Setting of DO 9	High order	4 bytes	0-4294967296
305	Setting of DO 9	Low order	4 bytes	0-4294967296
307	Setting of DO 10	High order	4 bytes	0-4294967296
309	Setting of DO 10	Low order	4 bytes	0-4294967296
311	Setting of DO 11	High order	4 bytes	0-4294967296
313	Setting of DO 11	Low order	4 bytes	0-4294967296
315	Setting of DO 12	High order	4 bytes	0-4294967296
317	Setting of DO 12	Low order	4 bytes	0-4294967296
319	Setting of DO 13	High order	4 bytes	0-4294967296
321	Setting of DO 13	Low order	4 bytes	0-4294967296
323	Setting of DO 14	High order	4 bytes	0-4294967296
325	Setting of DO 14	Low order	4 bytes	0-4294967296
327	Setting of DO 15	High order	4 bytes	0-4294967296
329	Setting of DO 15	Low order	4 bytes	0-4294967296
331	Setting of DO 16	High order	4 bytes	0-4294967296
333	Setting of DO 16	Low order	4 bytes	0-4294967296
335	Setting of DO 17	High order	4 bytes	0-4294967296
337	Setting of DO 17	Low order	4 bytes	0-4294967296
339	Setting of DO 18	High order	4 bytes	0-4294967296
341	Setting of DO 18	Low order	4 bytes	0-4294967296
343	Setting of DO 19	High order	4 bytes	0-4294967296
345	Setting of DO 19	Low order	4 bytes	0-4294967296
347	Setting of DO 20	High order	4 bytes	0-4294967296
349	Setting of DO 20	Low order	4 bytes	0-4294967296

Holding register 7/13

Address		Name	Size	Output range
351	Setting of DO 21	High order	4 bytes	0-4294967296
353	Setting of DO 21	Low order	4 bytes	0-4294967296
355	Setting of DO 22	High order	4 bytes	0-4294967296
357	Setting of DO 22	Low order	4 bytes	0-4294967296
359	Setting of DO 23	High order	4 bytes	0-4294967296
361	Setting of DO 23	Low order	4 bytes	0-4294967296
363	Setting of DO 24	High order	4 bytes	0-4294967296
365	Setting of DO 24	Low order	4 bytes	0-4294967296
367	Setting of DO 25	High order	4 bytes	0-4294967296
369	Setting of DO 25	Low order	4 bytes	0-4294967296
371	Setting of DO 26	High order	4 bytes	0-4294967296
373	Setting of DO 26	Low order	4 bytes	0-4294967296
375	Setting of DO 27	High order	4 bytes	0-4294967296
377	Setting of DO 27	Low order	4 bytes	0-4294967296
379	Setting of DO 28	High order	4 bytes	0-4294967296
381	Setting of DO 28	Low order	4 bytes	0-4294967296
383	Setting of DO 29	High order	4 bytes	0-4294967296
385	Setting of DO 29	Low order	4 bytes	0-4294967296
387	Setting of DO 30	High order	4 bytes	0-4294967296
389	Setting of DO 30	Low order	4 bytes	0-4294967296
391	Setting of DO 31	High order	4 bytes	0-4294967296
393	Setting of DO 31	Low order	4 bytes	0-4294967296
395	Setting of DO 32	High order	4 bytes	0-4294967296
397	Setting of DO 32	Low order	4 bytes	0-4294967296
399	Setting of DO 33	High order	4 bytes	0-4294967296
401	Setting of DO 33	Low order	4 bytes	0-4294967296
403	Setting of DO 34	High order	4 bytes	0-4294967296
405	Setting of DO 34	Low order	4 bytes	0-4294967296
407	Setting of DO 35	High order	4 bytes	0-4294967296
409	Setting of DO 35	Low order	4 bytes	0-4294967296
411	Setting of DO 36	High order	4 bytes	0-4294967296
413	Setting of DO 36	Low order	4 bytes	0-4294967296
415	Setting of DO 37	High order	4 bytes	0-4294967296
417	Setting of DO 37	Low order	4 bytes	0-4294967296
419	Setting of DO 38	High order	4 bytes	0-4294967296
421	Setting of DO 38	Low order	4 bytes	0-4294967296
423	Setting of DO 39	High order	4 bytes	0-4294967296
425	Setting of DO 39	Low order	4 bytes	0-4294967296
427	Setting of DO 40	High order	4 bytes	0-4294967296
429	Setting of DO 40	Low order	4 bytes	0-4294967296
431	Setting of DO 41	High order	4 bytes	0-4294967296
433	Setting of DO 41	Low order	4 bytes	0-4294967296
435	Setting of DO 42	High order	4 bytes	0-4294967296
437	Setting of DO 42	Low order	4 bytes	0-4294967296

Holding register $8 / 13$

Address	Name	Size	Output range
439	Setting of DO 43 High order	4 bytes	$0-4294967296$
441	Setting of DO 43 Low order	4 bytes	$0-4294967296$
443	Behavior of DO BZ	2 bytes	$0-2$
444	Behavior of DO 1	2 bytes	$0-2$
445	Behavior of DO 2	2 bytes	$0-2$
446	Behavior of DO 3	2 bytes	$0-2$
447	Behavior of DO 4	2 bytes	$0-2$
448	Behavior of DO 5	2 bytes	$0-2$
449	Behavior of DO 6	2 bytes	$0-2$
450	Behavior of DO 7	2 bytes	$0-2$
451	Behavior of DO 8	2 bytes	$0-2$
452	Behavior of DO 9	2 bytes	$0-2$
453	Behavior of DO 10	2 bytes	$0-2$
454	Behavior of DO 11	2 bytes	$0-2$
455	Behavior of DO 12	2 bytes	$0-2$
456	Behavior of DO 13	2 bytes	$0-2$
457	Behavior of DO 14	2 bytes	$0-2$
458	Behavior of DO 15	2 bytes	$0-2$
459	Behavior of DO 16	2 bytes	$0-2$
460	Behavior of DO 17	2 bytes	$0-2$
461	Behavior of DO 18	2 bytes	$0-2$
462	Behavior of DO 19	2 bytes	$0-2$
463	Behavior of DO 20	2 bytes	$0-2$
464	Behavior of DO 21	2 bytes	$0-2$
465	Behavior of DO 22	2 bytes	$0-2$
466	Behavior of DO 23	2 bytes	$0-2$
467	Behavior of DO 24	2 bytes	$0-2$
468	Behavior of DO 25	2 bytes	$0-2$
469	Behavior of DO 26	2 bytes	$0-2$
470	Behavior of DO 27	2 bytes	$0-2$
471	Behavior of DO 28	2 bytes	$0-2$
472	Behavior of DO 29	2 bytes	$0-2$
473	Behavior of DO 30	2 bytes	$0-2$
474	Behavior of DO 31	2 bytes	$0-2$
475	Behavior of DO 32	2 bytes	$0-2$
476	Behavior of DO 33	2 bytes	$0-2$
477	Behavior of DO 34	2 bytes	$0-2$
478	Behavior of DO 35	2 bytes	$0-2$
479	Behavior of DO 36	2 bytes	$0-2$
480	Behavior of DO 37	2 bytes	$0-2$
481	Behavior of DO 38	$0-2$	
482	Behavior of DO 39	2 bytes	$0-2$
483	Behavior of DO 40	Behavior of DO 41	$0-2$
484	Bes	0	

Holding register $9 / 13$

Address	Name	Size	Output range
485	Behavior of DO 42	2 bytes	0-2
486	Behavior of DO 43	2 bytes	0-2
487	Delay time of DO BZ	2 bytes	0.00-99.99
488	Delay time of DO 1	2 bytes	0.00-99.99
489	Delay time of DO 2	2 bytes	0.00-99.99
490	Delay time of DO 3	2 bytes	0.00-99.99
491	Delay time of DO 4	2 bytes	0.00-99.99
492	Delay time of DO 5	2 bytes	0.00-99.99
493	Delay time of DO 6	2 bytes	0.00-99.99
494	Delay time of DO 7	2 bytes	0.00-99.99
495	Delay time of DO 8	2 bytes	0.00-99.99
496	Delay time of DO 9	2 bytes	0.00-99.99
497	Delay time of DO 10	2 bytes	0.00-99.99
498	Delay time of DO 11	2 bytes	0.00-99.99
499	Delay time of DO 12	2 bytes	0.00-99.99
500	Delay time of DO 13	2 bytes	0.00-99.99
501	Delay time of DO 14	2 bytes	0.00-99.99
502	Delay time of DO 15	2 bytes	0.00-99.99
503	Delay time of DO 16	2 bytes	0.00-99.99
504	Delay time of DO 17	2 bytes	0.00-99.99
505	Delay time of DO 18	2 bytes	0.00-99.99
506	Delay time of DO 19	2 bytes	0.00-99.99
507	Delay time of DO 20	2 bytes	0.00-99.99
508	Delay time of DO 21	2 bytes	0.00-99.99
509	Delay time of DO 22	2 bytes	0.00-99.99
510	Delay time of DO 23	2 bytes	0.00-99.99
511	Delay time of DO 24	2 bytes	0.00-99.99
512	Delay time of DO 25	2 bytes	0.00-99.99
513	Delay time of DO 26	2 bytes	0.00-99.99
514	Delay time of DO 27	2 bytes	0.00-99.99
515	Delay time of DO 28	2 bytes	0.00-99.99
516	Delay time of DO 29	2 bytes	0.00-99.99
517	Delay time of DO 30	2 bytes	0.00-99.99
518	Delay time of DO 31	2 bytes	0.00-99.99
519	Delay time of DO 32	2 bytes	0.00-99.99
520	Delay time of DO 33	2 bytes	0.00-99.99
521	Delay time of DO 34	2 bytes	0.00-99.99
522	Delay time of DO 35	2 bytes	0.00-99.99
523	Delay time of DO 36	2 bytes	0.00-99.99
524	Delay time of DO 37	2 bytes	0.00-99.99
525	Delay time of DO 38	2 bytes	0.00-99.99
526	Delay time of DO 39	2 bytes	0.00-99.99
527	Delay time of DO 40	2 bytes	0.00-99.99
528	Delay time of DO 41	2 bytes	0.00-99.99

Holding register $10 / 13$

Address	Name	Size	Output range
529	Delay time of DO 42	2 bytes	0.00-99.99
530	Delay time of DO 43	2 bytes	0.00-99.99
531	Hold time of DO BZ	2 bytes	0.00-99.99
532	Hold time of DO 1	2 bytes	0.00-99.99
533	Hold time of DO 2	2 bytes	0.00-99.99
534	Hold time of DO 3	2 bytes	0.00-99.99
535	Hold time of DO 4	2 bytes	0.00-99.99
536	Hold time of DO 5	2 bytes	0.00-99.99
537	Hold time of DO 6	2 bytes	0.00-99.99
538	Hold time of DO 7	2 bytes	0.00-99.99
539	Hold time of DO 8	2 bytes	0.00-99.99
540	Hold time of DO 9	2 bytes	0.00-99.99
541	Hold time of DO 10	2 bytes	0.00-99.99
542	Hold time of DO 11	2 bytes	0.00-99.99
543	Hold time of DO 12	2 bytes	0.00-99.99
544	Hold time of DO 13	2 bytes	0.00-99.99
545	Hold time of DO 14	2 bytes	0.00-99.99
546	Hold time of DO 15	2 bytes	0.00-99.99
547	Hold time of DO 16	2 bytes	0.00-99.99
548	Hold time of DO 17	2 bytes	0.00-99.99
549	Hold time of DO 18	2 bytes	0.00-99.99
550	Hold time of DO 19	2 bytes	0.00-99.99
551	Hold time of DO 20	2 bytes	0.00-99.99
552	Hold time of DO 21	2 bytes	0.00-99.99
553	Hold time of DO 22	2 bytes	0.00-99.99
554	Hold time of DO 23	2 bytes	0.00-99.99
555	Hold time of DO 24	2 bytes	0.00-99.99
556	Hold time of DO 25	2 bytes	0.00-99.99
557	Hold time of DO 26	2 bytes	0.00-99.99
558	Hold time of DO 27	2 bytes	0.00-99.99
559	Hold time of DO 28	2 bytes	0.00-99.99
560	Hold time of DO 29	2 bytes	0.00-99.99
561	Hold time of DO 30	2 bytes	0.00-99.99
562	Hold time of DO 31	2 bytes	0.00-99.99
563	Hold time of DO 32	2 bytes	0.00-99.99
564	Hold time of DO 33	2 bytes	0.00-99.99
565	Hold time of DO 34	2 bytes	0.00-99.99
566	Hold time of DO 35	2 bytes	0.00-99.99
567	Hold time of DO 36	2 bytes	0.00-99.99
568	Hold time of DO 37	2 bytes	0.00-99.99
569	Hold time of DO 38	2 bytes	0.00-99.99
570	Hold time of DO 39	2 bytes	0.00-99.99
571	Hold time of DO 40	2 bytes	0.00-99.99
572	Hold time of DO 41	2 bytes	0.00-99.99

Holding register $11 / 13$

Address	Name	Size	Output range
573	Hold time of DO 42	2 bytes	$0.00-99.99$
574	Hold time of DO 43	2 bytes	$0.00-99.99$
575	Polarity of DO BZ	2 bytes	$0.00-99.99$
576	Polarity of DO 1	2 bytes	$0-1$
577	Polarity of DO 2	2 bytes	$0-1$
578	Polarity of DO 3	2 bytes	$0-1$
579	Polarity of DO 4	2 bytes	$0-1$
580	Polarity of DO 5	2 bytes	$0-1$
581	Polarity of DO 6	2 bytes	$0-1$
582	Polarity of DO 7	2 bytes	$0-1$
583	Polarity of DO 8	2 bytes	$0-1$
584	Polarity of DO 9	2 bytes	$0-1$
585	Polarity of DO 10	2 bytes	$0-1$
586	Polarity of DO 11	2 bytes	$0-1$
587	Polarity of DO 12	2 bytes	$0-1$
588	Polarity of DO 13	2 bytes	$0-1$
589	Polarity of DO 14	2 bytes	$0-1$
590	Polarity of DO 15	2 bytes	$0-1$
591	Polarity of DO 16	2 bytes	$0-1$
592	Polarity of DO 17	2 bytes	$0-1$
593	Polarity of DO 18	2 bytes	$0-1$
594	Polarity of DO 19	2 bytes	$0-1$
595	Polarity of DO 20	2 bytes	$0-1$
596	Polarity of DO 21	2 bytes	$0-1$
597	Polarity of DO 22	2 bytes	$0-1$
598	Polarity of DO 23	2 bytes	$0-1$
599	Polarity of DO 24	2 bytes	$0-1$
600	Polarity of DO 25	2 bytes	$0-1$
601	Polarity of DO 26	2 bytes	$0-1$
602	Polarity of DO 27	2 bytes	$0-1$
603	Polarity of DO 28	2 bytes	$0-1$
604	Polarity of DO 29	2 bytes	$0-1$
605	Polarity of DO 30	2 bytes	$0-1$
606	Polarity of DO 31	2 bytes	$0-1$
607	Polarity of DO 32	2 bytes	$0-1$
608	Polarity of DO 33	$0-1$	
609	Polarity of DO 34	2 bytes	$0-1$
610	Polarity of DO 35	2 bytes	$0-1$
611	Polarity of DO 36	2 bytes	$0-1$
612	Polarity of DO 37	2 bytes	$0-1$
613	Polarity of DO 38	$0-1$	
614	Polarity of DO 39	$0-1$	
615	Polarity of DO 40	2 bytes	$0-1$
616	Polarity of DO 41	$0-1$	

Holding register 12/13

Address	Name	Size	Output range
617	Polarity of DO 42	2 bytes	0-1
618	Polarity of DO 43	2 bytes	0-1
619	Decimal point	2 bytes	0-4
620	Division	2 bytes	0-5
621	Capacity	4 bytes	0.0000-99999.9999
623	Zero point range	2 bytes	0-30
624	Power-on auto zero range	2 bytes	0-100
625	Zero tracking time	2 bytes	0.0-9.9
626	Zero tracking weight	2 bytes	0-9
627	Stability time (to regard as stable weighing value)	2 bytes	0.0-9.9
628	Stability weight (to regard as stable weighing value)	2 bytes	0-9
629	Weight value	4 bytes	0.0000-99999.9999
631	Weighing mode	2 bytes	0-2
632	Negative weight	2 bytes	0-1
633	Display data	2 bytes	0-1
634	Do not use address because of reserved expansion	2 bytes	
635	number.	2 bytes	
636	Unsplit range	2 bytes	0-100
637	Curb chattering	2 bytes	0.00-99.99
638	Photo eye sensor polarity	2 bytes	0-1
639	Photo eye sensor time out	2 bytes	0.00-99.99
640	Priority of peripherals	2 bytes	0-1
641	Digital Filter (Static)	2 bytes	0-9
642	Save operation history to USB	2 bytes	0-1
643	Save weighing history to USB	2 bytes	0-1
644	Reject stage	2 bytes	0-1
645	Target	4 bytes	0.0000-99999.9999
647	HiHi limit	4 bytes	0.0000-99999.9999
649	Hi limit	4 bytes	0.0000-99999.9999
651	Lo limit	4 bytes	0.0000-99999.9999
653	LoLo limit	4 bytes	0.0000-99999.9999
655	Over weight exception	2 bytes	0-1
656	Consecutive fail stop	2 bytes	0-1
657	Consecutive fail num	2 bytes	0-9999
658	Product length	2 bytes	30-999
659	Speed	2 bytes	10-120
660	Do not use address because of reserved expansion number.	2 bytes	
661		2 bytes	
662		2 bytes	
663		2 bytes	
664		2 bytes	
665		2 bytes	
666		2 bytes	
667		4 bytes	

Holding register 13/13

Address	Name	Size	Output range
669	Num of samples	2 bytes	$2-9999$
670	Sub sample	2 bytes	$2-10$
671	$\overline{\bar{X}}$	4 bytes	$0.0000-99999.9999$
673	\bar{R}	4 bytes	$0.0000-99999.9999$
675	Width of Section	4 bytes	$0.0000-99999.9999$
677	Auto zero range	4 bytes	$0.0000-99999.9999$
679	Dead zone timer of auto zero	2 bytes	$0.0-999.9$
680	Observation timer of auto zero	2 bytes	$0.00-99.99$
681	Averaging time of auto zero	2 bytes	$0.00-99.99$
682	Auto zero samples	2 bytes	$1-100$
683	Coe of auto zero	2 bytes	$0-100$
684	Do not use address because of reserved expansion number.	2 bytes	$0-1$
685	D. comp value (Dynamic compensation value)	4 bytes	$0.50000-2.00000$
687	Tare	4 bytes	$0.0000-99999.9999$
689	Feedback control target	4 bytes	$0.0000-99999.9999$
691	Feedback control range	4 bytes	$0.0000-99999.9999$
693	Feedback control step [g/sec]	4 bytes	$1.0000-100.0000$
695	Feedback control step [sec/g]	4 bytes	$0.0001-1.0000$
697	Feedback control sample	2 bytes	$1-999$
698	Feedback control waiting time	2 bytes	$0.0-999.9$
699	Control target	4 bytes	$0.0000-99999.9999$
701	Zone 1	4 bytes	$0.0000-99999.9999$
703	Zone 2	4 bytes	$0.0000-99999.9999$
705	Zone 3	4 bytes	$0.0000-99999.9999$
707	Zone 4	4 bytes	$0.0000-99999.9999$
709	10 C sample	2 bytes	$1-999$
710	$10 C$ wait time	2 bytes	$0.0-999.9$

10.6. Communication Command of Modbus TCP

10.6.1. Protocol Layout

When the request or response of Modbus are communicated using Modbus TCP, the format is shown below. Transaction identifier of slave side is used to return a copy only. Transaction identifier of master side is used to transaction management of messages. The following 6 byte information is added at the head of the request and response of Modbus TCP.

Byte 0 : Transaction identifier, Slave only copies, usually 0
Byte 1 : Transaction identifier, Slave only copies, usually 0
Byte 2 : Transaction identifier $=0$
byte 3 : Transaction identifier $=0$
Byte 4 : Length (High-order byte) $=0$ (Because all messages are under 256.)
Byte 5 : Length (Low-order byte) = Number of following bytes
Byte 6 : Slave address
Byte 7 : Modbus function
Byte 8 or later : Required data sequence
Relationship of data construction of message for Modbus TCP and Modbus is as follows :

Modbus	Start	ddress	Function	Data	CRC	End
Modbus / TCP	$\begin{array}{\|c} \hline \text { Transaction } \\ \text { identifier } \\ \hline \end{array}$	Protocol identifier	Length	Unit identifier	Function	Data
	byte 0, 1	byte 2,3	byte 4, 5	byte 6	byte 7	byte 8

10.6.2. Example of Reading Input Register

This example describes concerning communication command in Modbus TCP. The input register is read the same conditions of the "10.3.1. Example of Reading Input Register". Example of transmission command and example of response processed properly are shown below.

Cautions

- Error check is not necessary for Modbus TCP.

Transmission Command Response

Command description	Transmission data	Command description	Response data
Transaction identifier	0×00	Transaction identifier	0×00
Transaction identifier	0×00	Transaction identifier	0×00
Protocol identifier	0×00	Protocol identifier	0×00
Protocol identifier	0×00	Protocol identifier	0×00
Field length (high-order)	0×00	Field length (high-order)	0×00
Field length (low-order)	0×06	Field length (low-order)	0×06
Slave address	0×01	Slave address	0×01
Function code	0×04	Function code	0×04
Start address (high-order)	0×00	Start address (high-order)	0×00
Start address (low-order)	$0 \times 2 \mathrm{C}$	Start address (low-order)	$0 \times 2 \mathrm{C}$
Number of register (high-order)	0×00	Number of register (high-order)	0×00
Number of register (low-order)	0×02	Number of register (low-order)	0×02

Table 20 Example of the transmission command (Reading of input register)

Table 21 Example of the response (Reading of input register)

11. Interface

11.1. Control I/O

The control I/O is the interface to input and/or output bit information between this indicator and connected peripherals, and equips 11 points of DO and 11 points of DI.

Table 22 Specifications of the control I/O interface

Input Circuit	DC Input (Source)
Open voltage of input terminal	7 to 11 V
Current of input terminal	5 mA (Maximum)
Tolerance saturation voltage	2 V (Maximum)
Output Circuit	Open collector
Maximum output voltage	DC 40 V
Maximum output current	50 mA
Tolerance saturation voltage	1.5 V (at 50 mA drive current)

11.1.1. Connection of Control I/O

Drawing 96 Terminals of Control I/O Connector

Table 23 DI and DO terminals on the control I/O

Input terminal	DI number	
A1	DI	1
A2	DI	2
A3	DI	3
A4	DI	4
A5	DI	5
A6	DI	6
A7	DI	7
A8	DI	8
A9	DI	9
A10	DI	10
A11	DI	11
A12	DI common	

Output terminal	DO number	
B1	DO 1	
B2	DO 2	
B3	DO 3	
B4	DO 4	
B5	DO 5	
B6	DO 6	
B7	DO 7	
B8	DO 8	
B9	DO 9	
B10	DO 10	
B11	DO 11	
B12	DO common	

11.2. RS-232C

The RS-232C interface is used to communication with printer, bar code reader and computer.
Table 24 Specifications of RS-232C Interface

Transmission form	EIA RS-232C Conformed
Data length	7 bit, 8 bit
Start bit	1 bit
Parity	Even 1 bit ,Odd 1 bit, None
Stop bit	1 bit, 2 bit
Baud rate	$2400,4800,9600,19200,38400,57600,115200$
Code	ASCII code

11.2.1. Connection of RS-232C

Drawing 97 RS-232C Internal Circuit

11.3. RS-485

The RS-485 interface is used to communication with PLC on Modbus RTU and to stream mode with computer.

- Terminal resistor needs surely for RS-485. Install terminal resistor between + terminal and terminal at the longest position from transmission terminal. (Terminal resistor is not included to accessory.)
- Polarity of terminals on some host device may be reversed.
- If signal ground terminal is not equipped, SG terminal is not used.
- Connect the shield wire to the FG terminal if you use shielded cable.

Table 25 Specifications of RS-485 Interface

Transmission form	EIA RS-485 Conformed
Data length	7 bit, 8 bit
Start bit	1 bit
Parity	Even 1 bit ,Odd 1 bit, None
Stop bit	1 bit, 2 bit
Baud rate	$2400,4800,9600,19200,38400,57600,115200$
Line type	Differential line $\times 2$
Code	ASCII code

11.3.1. Connection of RS-485

RS-485 +	20.	Transmission \& receive +
RS-485-	Br	Transmission \& receive -
SG	Ear	Signal ground
FG	O2	Shield
RS-485 +	O	
RS-485-	O	
SG	O	
FG	O	
SIG IN	O	
12 V OUT	O	
12 V GND	Tor	

Drawing 99 Terminals of RS-485 Connector

Drawing 100 RS-485 Inside Circuit

11.4. Photo Eye Sensor

The interface is used to photo eye sensor.
The connection of photo eye sensor is used on the terminal of terminal box principally.
Additionally, it can be used on the terminal of this connector, too.

11.4.1. Connection of Photo Eye Sensor

Drawing 101 Terminal of Photo eye sensor

11.5. OP-02 Relay Output

OP-02 relay output is an option equipped mechanical contact of DO 9 which has the same as function to the control I/O.

Table 26 OP-02 Specifications of Relay Output Interface

Output circuit	Mechanical contact relay	
Rated load	$\begin{array}{rr} \hline 250 \text { VAC } & 3 A \\ 30 \text { VDC } & 3 A \end{array}$	at rated load at rated load
Current at common terminal	10 ADC	at maximum
Minimum load	$100 \mathrm{mV} \quad 100 \mu \mathrm{~A}$	
Mechanical lifetime	20,000,000 times or more	at no load
Electrical lifetime	100,000 times or more	at rated load

Cautions

- OP-02 relay output and OP-05 parallel I/O can install into the indicator up to total 2 options. Address number of DI and DO are changed to number adapted to slot installed.
- When OP-02 is installed to slot 1, DO 12 to DO 20 are assigned as address numbers. When OP-02 is installed to slot 2, DO 28 to DO 36 are assigned as address numbers.

Table 27 Accessory of OP-02 Relay Output

Name	Pieces		Descriptions
Relay output connector	1	1TMFKC2.5/11STF	Phoenix contact

Screw hole

When option is installed, confirm that screw is fixed.
Drawing 102 Terminal of OP-02 connector Drawing 103 OP-02 Output Circuit
Table 28 DO terminals on the OP-02 Relay Output

Output terminal		DO number on option slot 1	DO number on option slot 2
1 ch	RL1	DO 12	DO 28
	RL2	DO 13	DO 29
	RL3	DO 14	DO 30
	RL4	DO 15	DO 31
	RL5	DO 16	DO 32
	COM1	Common terminal	
2 ch	RL6	DO 17	DO 33
	RL7	DO 18	DO 34
	RL8	DO 19	DO 35
	RL9	DO 20	DO 36
	COM2	Commo	terminal

11.6. OP-05 Parallel Input / Output

OP-05 parallel input / output is the option to expand the control I/O.
These terminals can use the same as the control I/O.
Timing of input and output is the same as the control I/O, too.
Table 29 Specifications of the OP-05 Parallel Input / Output

Input Circuit	None voltage input / open collector drive
Open voltage of input terminal	7 to 11 V
Current of input terminal	5 mA (Maximum)
Tolerance saturation voltage	2 V (Maximum)
Output Circuit	Open collector
Maximum output voltage	DC 40 V
Maximum output current	50 mA
Tolerance saturation voltage	1.5 V (at 50 mA drive current)

Cautions

- OP-02 relay output and OP-05 parallel I/O can install into the indicator up to total 2 options. Address number of DI and DO are changed to number adapted to slot installed.
- When OP-05 is installed to slot 1, DI 12 to DI 27 and DO 12 to DO 27 are assigned. When OP-05 is installed to slot 2, DI 28 to DI 43 and DO 28 to DO 43 are assigned.

Table 30 DI and DO terminals on the OP-05 parallel I/O

Input terminal	DI number on option slot 1	DI number on option slot 2
A1	DI 12	DI 28
A2	DI 13	DI 29
A3	DI 14	DI 30
A4	DI 15	DI 31
A5	DI 16	DI 32
A6	DI 17	DI 33
A7	DI 18	DI 34
A8	DI 19	DI 35
A9	DI 20	DI 36
A10	DI 21	DI 37
A11	DI 22	DI 38
A12	DI 23	DI 39
A13	DI 24	DI 40
A14	DI 25	DI 41
A15	DI 26	DI 42
A16	DI 27	DI 43
A17	DI common	Dl common
A18		
A19		
A20	FG	FG

Output terminal	DO number on option slot 1	DO number on option slot 2
B1	DO 12	DO 28
B2	DO 13	DO 29
B3	DO 14	DO 30
B4	DO 15	DO 31
B5	DO 16	DO 32
B6	DO 17	DO 33
B7	DO 18	DO 34
B8	DO 19	DO 35
B9	DO 20	DO 36
B10	DO 21	DO 37
B11	DO 22	DO 38
B12	DO 23	DO 39
B13	DO 24	DO 40
B14	DO 25	DO 41
B15	DO 26	DO 42
B16	DO 27	DO 43
B17		DO common
DO common		
B19		
B20	FG	FG

11.7. OP-07 Analog Output

OP-07 analog output is the option to output 4-20 mA or 0-10 V adapted to weighing data etc.
Table 31 Specifications of the OP-07 Analog Output

Output form	$4-20 \mathrm{~mA}$ current output (Range : $2-22 \mathrm{~mA}$) $0-10 \mathrm{~V}$ voltage output
Maximum output voltage	$11 \mathrm{~V} \mathrm{min}. \mathrm{(at} \mathrm{current} \mathrm{output)} / 10 \mathrm{~V}$ (at voltage output)
Resistor	0 to 500Ω (at current output) $/ 560 \Omega$ or more (at voltage output)
Output rate	200 time $/ \mathrm{s}$
Zero temperature coefficient	$\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max.)
Span temperature coefficient	$\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max.)
Non-linearity	0.1% (max.)
Resolution	Smallest value of 40000 or readability

Table 32 Accessory of the OP-07 Analog Output

Name	Pieces	Descriptions	
Relay output connector	1	1TMFKC2.5/12STF	Phoenix Contact

Screw hole

When option is installed, confirm that screw is fixed.

Drawing 106 Terminal of OP-07 connector

11.7.1. The Way to Set Output Current

Rate of analog output can arrange using low output value and high output value.
This value can select weight value or conveyor velocity.

Example Line 1 Low current standard $=6 \mathrm{~mA}$
High current standard $=18 \mathrm{~mA}$
Low current output $=0.00 \mathrm{~g}$
High current output $=50.00 \mathrm{~g} \quad$ are specified.
Line 2 Low current standard $=4 \mathrm{~mA}$
High current standard $=20 \mathrm{~mA}$
Low current output $=0.00 \mathrm{~g}$
High current output $=100.00 \mathrm{~g} \quad$ are specified.

Note

- Additionally, it can arrange conveyor velocity to current value and weight value to voltage output.

11.8. OP-17 Additional Analog Output Module

OP-17 analog output is the option to output 4-20 mA or 0-10 V adapted to weighing data etc.

12. Maintenance

This chapter describes for maintenance and management of the indicator.

12.1. Error Messages of Indicator

When an error occurs in the indicator, error message is displayed in window.
When error message is displayed, treat error using the following table.

12.1.1. Error Message Table

Error message	Probable cause	Remedial action
Calibration weight error. The weight value is not within the span adjustment range.	Calibration weight is different.	Use the correct calibration weight. Perform the calibration again.
	The span weight is not put on the conveyor correctly.	Put the span weight on the center of the conveyor. Perform the calibration again.
	Foreign matter is existed or is touched to on the conveyor.	Remove foreign matter and calibrate again.
Photo eye sensor error. Light of photo eye sensor is shaded for preset time or longer.	There is anything between LED light and receiver of photo eye sensor.	Remove anything between LED light and receiver of photo eye sensor
	Axis of LED light and receiver of photo eye sensor have deviation.	Match axis of LED light and axis of receiver of photo eye sensor.
Printer error. Communication to printer failed.	Connection error.	Confirm the connection between indicator and printer.

12.2. Backup of System Data

The system data (all product registration, settings of weighing, settings of system, settings of user data, statistical data of each product, operation history) can store in USB flash drive.
If necessary data is deleted due to mis-operation or system cannot perform correctly, system at the time stored can be resumed using stored data in USB flash drive. We recommend to save data of system periodically.

Note

- Refer to "3.1.2. Removing USB Flash Drive" for how to remove the USB flash drive.
- Backup data has directory construction.

Directory name is "Year Month Date Hour Minute AD4412".
Example : When it stored at 2019/05/16/ 16:55, directory name is "201905161655AD4412".

Cautions

- Do not change data and construction of backup data to prevent system error.

Step 1. Login to the system with user management level of "Quality manager" or greater.
Step 2. Connect the USB flash drive to the USB port in the indicator.
Step 3. When USB flash drive is connected, the USB mark is indicated on upper-right side of the window.

User:Adminstrato
Step 4. Touch the "Setting" key to display the common setting window.

Step 5. Select "System 2" tab in the "Common setting window".
Touch the "Backup/Restoration" key.
Step 6. The "Backup/Restoration Window" is displayed. Touch the "Backup" key.

Drawing 111 Backup / Restoration Window
Step 7. The "Check text box" is displayed. Touch the "YES" key to store system data.
Step 8. After backup has finished, touch the "Home" key to return to the "Weighing window".

12.3. Restoring System Data

The procedure to restore data stored using the "12.2. Backup of System Data" is shown below.

Cautions

- When the restoration of data is performed, updated data from backup to this restoration is lost.

Note

- Refer to "3.1 .2. Removing USB Flash Drive" for how to remove the USB flash drive.

Step 1. Login to the system with user management level of "Quality manager" or greater.
Step 2. Connect the USB flash drive stored backup data to the USB port in the indicator.
Step 3. When USB flash drive is connected, the USB mark is indicated on upper-right side of the window.
\square User:Adminstrator \square Uss
Step 4. Touch the "Setting" key to display the common setting window.

Drawing 112 Common Setting Window (System tab2)

Step 5. Select "System 2" tab in the "Common setting window". Touch the "Backup/Restoration" key.

Step 6. The "Backup/Restoration Window" is displayed.
Touch the "Restoration" key.

Drawing 113 Backup / Restoration Window

Step 7. The restoration dialog box is displayed. Select a backup file in the directory of system data and touch the "OK" key

Drawing 114 Restoration dialog box
Step 8. Select type of restoration in the "Restoration check dialog box".

1. All settings

The settings that includes calibration data (zero point, span), motor calibration data. It is used for restoration of the indicator using backup data.
2. Partial settings

The settings except calibration data (zero point, span), motor calibration data. It can use to copy stored settings to other device.

Drawing 115 Restoration check dialog box

Step 9. The check dialog box is displayed. Touch the "YES" key to restore it. If not, touch the "NO".
Step 10. The message is displayed after the restoration. Turn off the indicator and turn on to restart.

12.4. Initialization to Factory Settings

The procedure to reset to factory settings is shown below.

Cautions

- When the factory settings is restored into the indicator, product information, weighing history, calibration data and system data stored the indicator are lost.
- Established parameters of wireless LAN are not initialized.

Step 1. Login to the system with user management level of "Quality manager" or greater.
Step 2. Touch the "Setting" key x to display the common setting window.

Drawing 116 Common Setting Window (System tab2)
Step 3. Select "System 2" tab in the "Common setting window".
Touch the "Backup/Restoration" key.
Step 4. The "Backup/Restoration Window" is displayed. Touch the "Initialize..." key.

Step 5. The "factory settings dialog box" is displayed. Touch the "YES" key to store them.
Step 6. The message is displayed after factory settings is stored. Turn off the indicator and turn on to restart.

13. Specifications

	AD-4412-CW	AD-4413-CW
Load cell excitation voltage	DC 5V, 60 mA with remote sense / Maximum $4 \times 350 \Omega$ load cells	
Input sensitivity	$0.15 \mu \mathrm{~V} / \mathrm{d}$ or greater	
Display resolution	999999 d	
Zero range	$\pm 7 \mathrm{mVN} \quad(\pm 35 \mathrm{mV})$	
Zero temperature coefficient	$\pm 0.02 \mu \mathrm{~V} / \mathrm{C}^{\circ} \quad$ (typ., Excluding dead load)	
Span temperature coefficient	$\pm 3 \mathrm{ppm} / \mathrm{C}^{\circ} \quad$ (typ.)	
Non-Linearity	$\pm 50 \mathrm{ppm}$ F.S. (typ.)	
Maximum input voltage	$\pm 7 \mathrm{mVN} \quad(\pm 35 \mathrm{mV})$	
Display	7 inch LCD with touch panel	
Operation	Touch panel	
Number of products registration	100010 group $\times 100$ kinds	
Communication function	RS-232C Computer / Dot impact printer etc. RS-485 Modbus RTU LAN ModbusTCP / Printer USB USB flash drive, data registration and image capture	
Number of digital input	11 points (None voltage input / open collector drive)	
Number of digital output	11 points (Open collector output)	
Extension port	OP-02 Relay output 9 points OP-05 Parallel I/O DI 16 points, DO16 points OP-07 Maximum 4 analog output	
Power supply of photo eye sensor I/F	12V 250 mA 1 point	
Power source	$100-240 \mathrm{VAC}$ (+10 \%, -15 \%), $50 / 60 \mathrm{~Hz}$ approximately 30 VA	
Operating temperature	-10 to $50 \mathrm{C}^{\circ}$	
Operating humidity	20 to 85% RH, no condensation	
Dust/water resistance	IP65 complied on panel	
Material	Front panel: $\mathrm{PC}+\mathrm{ABS}$ resin Rear panel: $\mathrm{PC}+\mathrm{ABS}$ resin	Front panel: Stainless steel Rear panel: PC + ABS resin

d: digit

MEMO

A\＆D Company，Limited
3－23－14 Higashi－Ikebukuro，Toshima－ku，Tokyo 170－0013，JAPAN
Telephone：［81］（3）5391－6132 Fax：［81］（3）5391－1566

A\＆D ENGINEERING，INC．

47747 Warm Springs Blvd，Fremont，California 94539，U．S．A．
Tel：［1］（800）726－3364 Weighing Support：［1］（888）726－5931 Inspection Support：［1］（855）332－8815

A\＆D INSTRUMENTS LIMITED

Unit 24／26 Blacklands Way，Abingdon Business Park，Abingdon，Oxfordshire OX14 1DY United Kingdom Telephone：［44］（1235） 550420

Fax：［44］（1235） 550485

A\＆D AUSTRALASIA PTY LTD

32 Dew Street，Thebarton，South Australia 5031，AUSTRALIA
Telephone：［61］（8）8301－8100
Fax：［61］（8）8352－7409
A\＆D KOREA Limited 한국에이．엔．디（주）
서울특별시 영등포구 국제금융로6길33（여의도동）맨하탄빌딩 817 우편 번호 07331
（ 817，Manhattan Bldg．，33．Gukjegeumyung－ro 6－gil，Yeongdeungpo－gu，Seoul， 07331 Korea ）
전화：［82］（2）780－4101 팩스：［82］（2）782－4264

OOO A\＆D RUS ООО＂ЭЙ энд ДИ РУС＂

Почтовый адрес：121357，Российская Федерация，г．Москва，ул．Верейская，дом 17
Юридический адрес：117545，Российская Федерация，г．Москва，ул．Дорожная，д．3，корп．6，комн． 8 б
（ 121357，Russian Federation，Moscow，Vereyskaya Street 17 ）
тел．：［7］（495）937－33－44 факс：［7］（495）937－55－66
A\＆D Instruments India Private Limited ऐ\＆डी इन्स्ट्र्यूमेन्ट्स इण्डिया प्रा० लिमिटेड
D－48，उद्योग विहार ，फेस－5，गुड़गांव－122016，हरियाणा ，भारत
（ D－48，Udyog Vihar，Phase－V，Gurgaon－122016，Haryana，India ）
फोन ：［91］（124） 4715555 फैक्स ：［91］（124） 4715599

```
A&D SCIENTECH TAIWAN LIMITED. A&D台灣分公司 艾安得股份有限公司
台湾台北市中正區青島東路 5 號4樓
(4F No.5 Ching Tao East Road, Taipei Taiwan R.O.C. )
Tel :[886](02) 2322-4722 Fax : [886](02) 2392-1794
```

A\＆D INSTRUMENTS（THAILAND）LIMITED บริษัท เอ แอนด์ ดี อินสทรูเม้นท์（ไทยแลนด์）จำกัด 168／16 หมูที่ 1 ตำบลรังสิต อำเภอธัญบุรี จังหวัดปทุมธานี 12110 ประเทศไทย （ 168／16 Moo 1，Rangsit，Thanyaburi，Pathumthani 12110 Thailand ）
Tel ：［66］ 20038911

