Title: SUPER-HYBRID-SENSOR FOR NEW BALANCES

Written by: Naoto Izumo / Yoshikazu Nagane

R&D Division, A&D Company, Limited

November 7~10, 2000

Tsukuba Center Inc.

Tsukuba, JAPAN
SUPER-HYBRID-SENSOR FOR NEW BALANCES
Naoto Izumo, Yoshikazu Nagane
R&D Division, A&D Company, Limited
Kitamoto-shi, Saitama, Japan

ABSTRACT
We developed a new weighing sensor construction which we named Super-Hybrid-Sensor (SHS) for the new GX series electronic balance. The construction of the SHS is a hybrid body which combines an Electromagnetic Force Motor and a Roberval body, the construction of which is same as a Load Cell using strain gauges. Since the SHS has both greater stability, due to its Roberval body, and greater sensitivity, because of the Electromagnetic Force Motor, the new sensor achieved a faster response time of approximately 1 second and higher stability (for example, 2mg by 6000 g) compared to conventional weighing sensors. We report the principle, construction and features of the SHS and also report specifications, performance & benefits of the new GX series electronic balance.

Keywords: Super-Hybrid-Sensor, Sensitivity & stability, Fast response time

1. INTRODUCTION
We developed a new weighing sensor construction named Super-Hybrid-Sensor (SHS).
The SHS construction is a hybrid body that combines the fulcrum and beam used in an electromagnetic force motor type sensor and a Roberval body, the construction of which is the same as a load cell using strain gauges.
SHS has a performance which combines the best benefits of the electromagnetic force motor balance with high resolutions in sensing method and the strain gauge load cell balance with high stability Ronberval construction for an object's loading on the weighing pan.
We now introduce the descriptions of the SHS characteristics and brand-new GX balance series with SHS installed. (See Fig.1~3)

2. SHS CONSTRUCTION & FEATURES
On an electromagnetic force balance, it is relatively possible to realize one/millionths resolution with down to earth footprint dimensions. Therefore, in many fields, the use of high resolution balances has set new records; however, the mechanical loading and sensing sections need to overcome the factors which complicate adjustments and solutions of four-corner errors on the weighing pan.

One of the above-mentioned factors is the large number of parts required for high resolution performance. These parts must be machined and processed precisely, ranging by 1×10^{-6}m to 10×10^{-6}m and there is a greater chance of error for assembly due to many parts.
These types of potential problems have caused malfunctions and poor production yield with higher production costs for balances.
To solve them, the SHS is constructed as an all in one type Roberval construction and conventional 60 parts can be reduced to one part. (See Fig.4)

By using SHS, we have realized faster response times brought about by solving assembling errors and greatly cutback on parts and assembling process costs. We also combined the all-in-one type Roberval with beam through fulcrum and tension flexures.
By aligning the above components separately, we were able to use conventional mechanical processing machines to produce Roberval, fulcrum and beam components without any problems.
By employing established processing method, we realized that there could be sufficient space between each weighing sensor component, including the Roberval structure.
The SHS features are summed up as follows:

1) High performance
Through hybridization, Roberval construction is highly stable and provides fast responses & high resolutions.

2) Smaller weighing sensor
The highly stable Roberval and the reduced number of components allowed us to decrease the size of the weighing sensor section.

3) Reliability
Construction and housing that is resistant to dust, powder and other fine particulate matter.

4) Reduced production costs
Reducing the number of and the size of parts, material & assembly resulted in greatly reduced processing costs.

5) Lower operation and maintenance costs
Fewer parts, such as fulcrum and flexures, need repair so maintenance is very efficient.

3. FEATURES OF GX BALANCE WITH SHS INSTALLED IN

1) As a top loader precision balance, GX with SHS installed in has realized resolutions as high as 1/600,000. The maximum resolution weighing capacity with the minimum display models are as follows: (See Fig.11)
 600g x 0.001g,
 6100g x 0.01g,
 8000g x 0.1g
GX models have national weight & measure certificate, and also have a certificate class U of EC type-approval in Europe.

2) Fast response
By using SHS technology, GX’s response time is very fast and under good environmental conditions, GX weighing reading can stabilize within one second. The all in one type Roberval construction provides high stability which brings an increase in the characteristic frequency of the sensor and flexible design control over the electronics and software and extremely fast response times. (See Fig.6~9)
3) Weight reading enhancement
Using the SHS technology, the weight reading was improved.
For instance, on the GX-6100 (6100g x 0.01g), an internal resolution of 0.001g was confirmed, which is the one digit greater than its minimum display of 0.01g. Using the GX-6100g, a 5kg object is weighed using three digits after the decimal point (0.001g), with a resulting internal resolution of 1/5,000,000. (See Fig.10)

4) Small footprint
Using a weighing sensor with SHS technology, the footprint of the sensor unit area was reduced by a 50%. With this downsizing of the sensor unit, the external physical dimensions of the existing top loader precision balance could be maintained and an internal calibration mass could be installed. (See Fig.5)

5) Cost savings
By employing the SHS technology, the cost of the weighing sensor unit was reduced by 50 % compared to in-house conventional balances. The cost savings brought our users high performance at more affordable prices. The decrease in the number of parts and materials were reduced, resulting in less industrial waste, which will contribute to environmental protection.

6) GX balance features of special interest
The newly added features and performance are:

a) Automatic Adjustable Environmental Setting:
GX adapts to the most suitable environmental setting automatically with one-touch key operation.
In an ideal environment, the fastest response setting can be set automatically and where there are drafts and/or vibration influences, the response setting can be automatically set to middle and/or slow to let stable reading take top priority.

b) Data Memory Function:
Weighed values can be stored in memory.

c) Communication with external devices such as a PC and a printer:
The RS-232C interface and A&D’s Windows based PC software, Windows Communication Tools (WinCT) allows the balance to send weighing data to a PC, are standard features.

4. SUMMARY
The SHS achieved a fast response time of 1 second and high stability as a balance.
To date, the SHS has been installed only in the GX Series balances. Plans are currently underway to expand the SHS capabilities, such as an increase in weighing capacity and higher resolution. Additionally, future plans are being considered to produce new products with the SHS’s high performance, reliability, smaller size and affordable price into new markets and in existing markets where customers’ requirements can not be met using the older conventional electromagnetic force balance technology.