Model Based Engine Calibration
Using State of the Art Software Support

2010 Motorcycle & Engine Key Technology Seminar
Tanjin University
June 2.-3.

Tony Gullitti, IAV Automotive Engineering, Inc
Don Nutter, A&D Technology, Inc
Dr. Jürgen Bredenbeck, A&D Europe GmbH
Introduction

• Model based calibration
 – Use of models of the engine behavior for main calibration
 – Models are created using Design of Experiments (DoE) Methods
• DoE in engine development is more than just experiment design
 – It is a synonym for a structured methodology of calibration
• Split nature of the process
 – Statistical knowledge for analysis
 – Test cell automation for data gathering
• Typical end user understands engines / calibration
 – But is not a statistics expert
 – Does not specialize in test bed control systems
Objective

- Objective
 - Demonstrate how to use the software tools to execute a typical calibration task
 - Ease of use
- Calibration Goal
 - Optimize part of the speed/relative load map of a gasoline engine
- Definition of Factors
 - Define optimal settings for available parameters
 - Variable Valve Timing
 - Spark Advance
 - Lambda
- Optimization Objectives
 - Minimize brake specific fuel consumption (BSFC)
 - Minimize the BSFC and emissions
 - Maximize the torque
State of the Art Software Tools

- The use of state of the art software tools facilitates the process for the end user and organization
 - EasyDoE ToolSuite provides statistical methods
 - ORION provides procedures for automated testing
Definition of Factors and Responses

- The factors required are
 - Engine Speed
 - Relative Load
 - Variable Valve Timing
 - Spark Advance
 - Lambda

- Optimization Constraints
 - Spark advance less than or equal to MBT Spark

- Monitor during data gathering
 - Knock Amplitude
 - Water, Oil Temperatures, etc.

- The responses required are
 - Torque
 - Mass Fuel Flow
 - Exhaust Temperature
 - Maximum Brake Torque (MBT)
 - Spark
 - Emissions HC/CO/NOx
 - Coefficient of Variation of Indicated Mean Effective Pressure (COV of IMEP)
 - BSFC (calculated)

\[
R = f(Spd, Ld, VVT, Spk, Lmd) \\
MBT = f(Spd, Ld, VVT, Lmd)
\]
Set Up Project

- Factors and responses are entered into EasyDoE Toolsuite
EasyDoE Test Plan

- The experiment design is entered, and 145 points are generated.
A&D Technology’s R&D Test Cell

Test Cell Features:
- ORION Test Automation
- iTesT Bench control
- ADX rapid prototype ECU
- Best Sokki Emissions Bench
- CAS Combustion Analysis

Engine Features:
- Production 4-cyl gasoline engine
- Variable Valve Timing
ORION Configuration

- ORION MDA is the key interface for the user creating the configuration.
- Main configuration task is Compiling the following elements:
 - Parameters – both from the test cell and Calibration tool.
 - Sequence – action to be executed in, flow-chart based.
 - Test Plan – all values from the DoE that the sequence needs to execute imported from Easy DoE.
ORION Test Execution

- MA is the key interface for the operator in the test cell
 - Simple load the configuration file from MDA
 - Connect to test cell control and calibration tool
 - Execute sequence by pressing “start”
- Indicators and graphs keep the operator informed on progress and status
- Test cell system collects the data as directed by MA via ORION “Measure” action
- MA remembers state of test point – measured successfully
 - Easy to restart a test
Data Gathering Strategy

- Save existing cal values
- Set speed and load
- Set VVT
- Set Lambda
- Sweep spark for MBT
 - Measure
- Set offset spark value relative to MBT Spark
 - Measure
- Reset cal values

Limit of:
COV of IMEP
Exhaust Temperature

Limit of:
COV of IMEP
Knocking Limit

1. Find MBT
2. Set Spark Timing Offset relative to MBT
 (value given by test plan)
Data Gathering Strategy

• Test cell run in speed / load mode

• Parallel control on spark advance during setting of speed / load and stepwise setting of VVT and Lambda
 – CA50
 – Monitored limits of temperature and knock

• Two data points taken for each Speed/Load/VVT/Lambda
 – On-line determination of MBT Spark using ORION optimization
 – Offset spark added to MBT

• Repeatability points are added
 – Center point of factor ranges
 – Used to check verify model quality
Data Gathering in the Test Cell with ORION

Part 1: Parallel Control of Spark CA50, Set stepwise VVT

- Store the initial values for the spark advance for reset at the end of the step.
- Start the parallel control for spark advance.
- Set the speed/load setpoint from the experiment design.
- Store the VVT value for reset.
- Store flags from the experiment design.
- Turn on VVT permission and set the VVT stepwise.
- Stabilize the temperature
- Change the dyno mode to speed / alpha to lock the air path.
Part 2: Set Stepwise Lambda

- Store the initial values for the Lambda for reset at the end of the step.
- Set the Lambda permission and set Lambda stepwise.
- Stop the parallel control for spark advance.
Part 3: Optimization

- Find optimal torque by sweeping spark. Exhaust temperature and knock are monitored to define boundaries.
- Alternatively, if this is a repeatability point, then set to the desired spark in the test plan. After every 10 experiment design points a repeatability point is run using the center point for each region to determine the variation of the response values.
- Stabilize for 10 seconds and then measure.
- Reset the values if this is a repeatability point.
- Otherwise continue to measure offset spark.
Part 4: Measure Offset Spark, Reset Starting Values

- Increment the spark advance by the offset spark value from the experiment design.
- Stabilize and measure.
- Reset the initial values and proceed to the next step.
Data Review

• The data is imported into EasyDoE Toolsuite and reviewed via a user interface
Data Review

• Temperature limits during data gathering set to 750°C
 – This was conservative; difficultly reaching lambda = 1
• Aftermarket Lambda sensor used for AFR feedback control
 – AFR calculated from bench was more reliable
 – Resulted in variation in the repeatability measurements for emissions

Lambda < 1 as speed / load increases
• The data is associated with the factor definition and modeled
• A best model is selected for each response and stored as a result model
EasyDoE Fitting Methods

- Model fitting is done automatically in EasyDoE Toolsuite
- The following polynomial fitting methods are run for each model

<table>
<thead>
<tr>
<th>Polynomial Fitting Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Standard Regression</td>
<td>Least Squares Estimation</td>
</tr>
<tr>
<td>2. Minimize PRESS</td>
<td>The PRESS value is used to select the model terms.</td>
</tr>
<tr>
<td>3. Stepwise Fit</td>
<td>Stepwise regression for term selection</td>
</tr>
<tr>
<td>4. OLS</td>
<td>Orthogonal Least Squares Estimation</td>
</tr>
<tr>
<td>5. T-test</td>
<td>Tests each coefficient to be zero with a specific probability (model structure). If the coefficient is likely to be zero it is taken out.</td>
</tr>
<tr>
<td>6. Robust Regression</td>
<td>Detects the bad data points and build models without these points.</td>
</tr>
<tr>
<td>7. Robust Regression + Minimize PRESS</td>
<td>Model is built without bad data points and trained with the 'best' terms selected by 'Minimize PRESS' algorithm.</td>
</tr>
<tr>
<td>8. Robust Regression + Stepwise Fit</td>
<td>Model is built without bad data points and trained with the 'best' terms selected by 'Stepwise Fit' algorithm.</td>
</tr>
<tr>
<td>9. Stagewise Regression</td>
<td>Incremental Forward Stagewise Algorithm i.e. incremental coefficient adaptation in direction of highest correlation to the current residuals.</td>
</tr>
</tbody>
</table>
Model Quality Analysis

Repeatability (%) = \(\text{Average} \left(\frac{\sigma}{\text{mean}} \right) \)

* of the repeatability points

Model Quality (%) = \(\frac{RMSE}{\text{Range}} \)

Repeatability < Model Quality_{\text{Fit}} < Model Quality_{\text{Valid & Ver}} < 5\%

- Repeatability and Model Quality should correlate
- The variability of the AFR sensor resulted in higher repeatability values for emissions
Optimization Requirements

• In Model Evaluation a grid of speed / load points is defined:
 – Speed 3000 to 5000 in 200 RPM increments
 – Relative Load 50 to 100% in 10% increments

• A weighted sum gradient descent method is selected.
 – +1 Maximize the response
 – -1 Minimize the response
 – 0 No optimization on the response

• Three optimizations:
 – Minimize BSFC: BSFC weight is set to -1
 – Minimize BSFC: BSFC weight is set to -0.5.
 • Min HC/CO/NOx HC/CO/NOx weights set to -0.05/-0.05/-0.4
 – Maximum torque: Torque weight is set to +1

• A constraint is set to restrict the factor of
 – Spark advance < MBT spark
Model Evaluation – Map Creation

• Maps for each optimization are created in the map editor
 – VVT, Spark, Lambda
• The optimization is performed in Model Evaluation
Model Evaluation – Map Editor

- After the optimization the maps can be edited graphically or in the table.
Model Evaluation

Objective BSFC

Torque

Lambda

NOx

Spark

BSFC

VVT
Conclusion

- **EasyDoE Toolsuite and ORION** provide effective methods for implementing DoE methods
 - Their GUIs make DoE easy to use
 - The results match the physical expectations
Thank you

Tony Gullitti
IAV Automotive Engineering, Inc
15620 Technology Drive
Northville, MI 48168
Phone: +1(734) 233-3352
anthony.gullitti@iav-usa.com

Don Nutter
A&D Technology, Inc
4622 Runway Blvd
Ann Arbor, MI 48108
Phone: +1(734) 822-9564
dnutter@aanddtech.com

Dr. Jürgen Bredenbeck
A&D Europe GmbH
Im leuschnerpark 4
64347 Griesheim
Germany
Phone: +49(6155) 60 52 50
bredenbeck@aanddeurope.com