

INSTRUCTION MANUAL

WARNING DEFINITIONS

The warnings described in this manual have the following meanings:

⚠WARNING	A potentially hazardous situation which, if not avoided, could result in death or serious injury.	
A CAUTION	A potentially hazardous situation which, if not avoided, may result in minor or moderate injury or damage to the instrument.	
A	This symbol indicates caution against electrical shock. Do not touch the part where the symbol is placed.	
	This symbol indicates the ground terminal.	
	This symbol indicates information useful to the user for operation of the device.	

© 2015 A&D Company, Limited. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, or translated into any language in any form by any means without the written permission of A&D Company, Limited.

The contents of this manual and the specifications of the instrument covered by this manual are subject to change for improvement without notice.

CONTENTS

1.	INTRODUCTION	3
1.1.	Features	3
2.	BEFORE USE	4
2.1.	Precautions Before Use	4
2.2.	Precautions During Use	4
3.	SPECIFICATIONS	6
3.1.	General specifications	6
3.2.	Functions	7
3.3.	Options	8
4.	FRONT PANEL	.10
4.1.	Display	. 10
4.2.	Status indicators	. 10
4.3.	Keys	. 11
4.4.	Operation mode	. 11
5.	REAR PANEL	.12
5.1.	Connector function	.12
5.2.	Equivalent circuit figure of control input section	. 14
5.3.	Attaching the connector	. 15
6.	COMPONENTS AND FUNCTIONS	.16
6.1.	Flowchart	. 16
6.2.	Descriptions of functions	. 17
7.	CALIBRATION	.18
7.1.	Calibration Modes	. 18
7.2.	Calibration Errors	20
8.	FUNCTION MODE	.21
8.1.	Structure of Functions	. 21
8.2.	Key operation	21
8.3.	Function Items	23
9.	DIGITAL ZERO (DZ)	28
9.1.	Operating by key	28
9.2.	Operating by I/O input	. 28
9.3.	Zero tracking	28
9.4.	Power On Zero	29
9.5.	Backup of DZ	. 29
10.	HOLD FUNCTION	30
10.1	I. Basic function	. 30
10.2	2. Hold indicator	30

10.3.	Priority when inputting hold	30
10.4.	Over value during hold	30
10.5.	Hold Modes	31
11. L	ATCH	.33
12. C	COMPARATOR FUNCTION	.34
12.1.	Detailed description of the comparator mode	. 34
12.2.	Setting the upper and lower limit value	34
12.3.	Example of the comparator mode	35
12.4.	Hysteresis	35
13. A	NALOG OUTPUT	.39
13.1.	Analog voltage DAV (0V to 10V)	39
13.2.	Analog current DAI (4mA to 20mA)	39
14. S	SERIAL INPUT AND OUTPUT	.40
14.1.	Data output format	40
14.2.	Command or response	40
15. N	//AINTENANCE	.42
15.1.	Error display	. 42
15.2.	Checking operation	43
16. S	ETTING LIST	.48
16.1.	Calibration (C function)	48
16.2.	Basic Functions	. 49
16.3.	Comparator	. 49
16.4.	Analog	. 50
16.5.	Serial Communication	50
17. E	XTERNAL DIMENSIONS	51

1. INTRODUCTION

Thank you for purchasing the AD-4530 Digital Indicator.

This manual describes how the AD-4530 works and how to get the most out of it in terms of performance. Please read this manual completely before using the AD-4530.

1.1. Features

The AD-4530 has the following features.

- Calibration without an actual load (Digital span mode)
 Keying in the sensor's rated output voltage (mV/V) allows calibration to be performed without using an actual load.
- Digital filter

The range for selecting the cutoff frequency is none (no function) or 0.1Hz to 2.5Hz.

□ Digital zero (DZ, zero adjustment)

The digital zero function sets the measured value to zero. When measuring a load, it can be used as the tare, etc.

The zero value is maintained in non-volatile memory (EEPROM). Therefore, when turning the power off then on (or power loss), this zero value is still available. Memory backup of 10,000,000 or more times is available.

Zero tracking function

The zero tracking function is used to set the corrected zero automatically by sensing the zero point drift.

Hold function

Sample, peak, bottom and bipolar peak values can be held using the hold mode.

Comparison function

Comparison results (HI, OK and LO) are output as display data and also as contact signals.

Chattering of the output can be prevented by setting the hysteresis.

Various data output terminals

Available options are comparator output, serial interface (RS-232C/RS-485), analog voltage output (DAV) and analog current output (DAI).

2. BEFORE USE

The digital indicator is a precision instrument. Unpack the digital indicator carefully and confirm that all items are present.

2.1. Precautions Before Use

- Avoid water and moisture.
- Avoid vibration, shock, extremely high temperature and humidity, direct sunlight, dust, and air containing salt or sulfurous gases.
- Avoid places where inflammable gases or vapors are present.
- □ The operating temperature is -10°C to +40°C.
- A 100 VAC to 240 VAC power source is required. Use a stable power supply free from sudden dropout or noise as they can cause malfunctions. Avoid sharing the power line.
- Keep cables away from power cables and other sources of electrical noise.
- $^{-}$ Connect only a non-inductive load of 510 Ω or less to the analog current output terminals.
- When connecting long cables to the sensors, keep the cables away from power cables and other sources of electrical noise.
- Do not connect the AD-4530 to the power supply before installation is completed. The AD-4530 has no switch to disconnect the power supply.
- Use shielded load cell cables.
- Do not connect too many sensors. Otherwise, instrument damage may occur.

2.2. Precautions During Use

- The AD-4530 is a precision instrument that measures the microvolt output from sensors. Prevent noise sources such as power lines, radios, electric welders or motors from affecting the instrument.
- Do not try to modify the AD-4530.
- In all hold modes, the hold data is saved digitally, so there is no drooping of the value displayed on the display panel or the analog output. Note that the hold function is disabled when the AD-4530 is disconnected from the power supply.

MARNING

Disconnect from the power supply before removing the cover.

• When removing the cover, make sure that the power is off.

A

Do not touch the instrument immediately after it is disconnected from the power supply.

■ To avoid electrical shock, do not touch the internal part of the instrument within ten seconds after switching the power off.

ACAUTION

Be sure to fasten all the screws completely.

 Loose screws may come off during operation and a short circuit may occur or measurement errors may occur due to noise.

3. SPECIFICATIONS

3.1. General specifications

Number of measurement points

 \Box Sensor type Strain gauge sensors (Output resistance: 10kΩ or less)

□ Voltage requirement 100 VAC to 240 VAC +10%, -15% (50/60 Hz)

Power requirement Approx. 10 VA

Sensor power supply
 DC5V±5%, 50 mA

120 Ω sensor: Up to one sensor can be connected. 350 Ω sensor: Up to three sensors can be connected.

□ Measurement ranges
Signal input range: -35 to +35 mV (-7 to +7 mV/V)

Zero adjustment range: -35 to +35 mV (-7 to+7 mV/V) Minimum guaranteed input sensitivity: 0.4 μ V/d or

more (d = minimum division)

Minimum displayed input sensitivity: Non-limit

A/D conversion method
 Delta sigma method

□ Internal division Approx. 1,000,000 counts

□ Sampling rate
 □ Display range
 10 times / second
 -9999 to +9999

□ Linearity Within 0.01%F.S. ± 1 digit

□ Temperature characteristics Zero: ±0.2 μV/°C typ.

Span: ±30 ppm/°C typ.

□ Operating temperature -10 °C to +40 °C

Operating humidity
 Max. 85% RH (no condensation)

Calibration method
 Digital span: Method not using an actual load

Actual load calibration

External dimensions96 x 48 x 127.5 mm (W x H x D)

Panel cutout: 92 x 45 mm

Separation: Width: 120 mm or more

Length: 70 mm or more

□ Mass Approx. 290 g

Display panel Measured value display:

7-segment, 4-digit red LED screen with 14-mm

character size

Polarity display: 1 red LED screen

Status displays:

1 red LED screen, 2 green LED screens, 2 orange

LED screens

Key switch: 5 switches

3.2. Functions

■ Digital zero (Zero adjustment)

Sets the measured value to zero using the ZERO key, external input or the command signal.

The zero value is maintained in non-volatile memory (EEPROM).

Available setting range

The available setting range is 1 to 100% of the rated capacity.

Zero tracking function

Automatically performs the zero point update by sensing the zero point movement.

Available setting range

Tracking time :0.0 to 5.0 (second)

Tracking width: 0.0 to 9.9 (d)

Power on zero function

Sets the digital zero state at power on.

Digital filter function

Cutoff frequency range: 0.1 to 2.5 (Hz)

Comparator function

HI, OK or LO is determined by the setting of the upper or lower limit value.

Hold function

Select from sample hold, peak hold, bottom hold, or bipolar peak hold.

Latch function

Perform latching of the display value, comparator output, analog output and serial output using the external LATCH input.

Relay output function

Provides contact output of the HI, OK or LO signals.

Serial input and output function

The RS-485/RS-232C option can output measured values and input commands.

Analog output function

Outputs the measured value as an analog voltage or current.

3.3. Options

3.3.1. Options

AD-4530-200: Relay output

AD-4530-030: RS-485 AD-4530-040: RS-232C

AD-4530-007: Analog output

AD-4530-237: Relay output, RS-485, Analog output AD-4530-247: Relay output, RS-232C, Analog output

Note: Only one option can be installed in the AD-4530 at a time.

3.3.2. Option specifications

■ Relay output HI, OK, LO

AD4530-200 AC250V or DC30V 3A (Total current 5A)
AD4530-237 Contact construction: Metallic contact

AD4530-247 Contact capability: 1a

Mechanical operating life: 5,000,000 times or more

Electrical operating life: 100,000 times or more (Resistive load)

Connector: 4 pin (HI, OK, LO, COM)

■ RS-485 EIA RS-485 conformity

(AD4530-030) Number of drops: Up to 31

AD4530-237 | Connector: 5 pin (A, B, SG, A, B)

■ RS-232C EIA RS-232C conformity

(AD4530-040) Connector: 5 pin (RxD, TxD, SG, IC, IC)

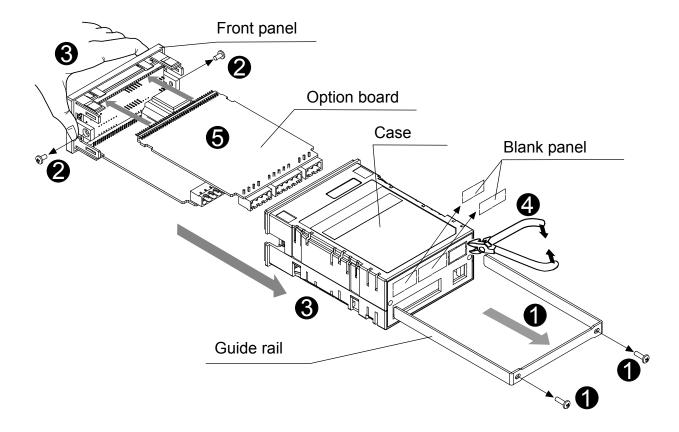
AD4530-247

Analog output D/A conversion method: PWM

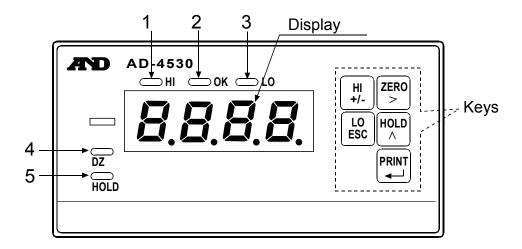
AD4530-007 Resolution: 13 bit equivalent
AD4530-237 Response rate: Approx. 500 ms

AD4530-247 Voltage output: 0-10V Adaptive load: 10 kΩ min.

Current output: 4-20 mA Adaptive load: 510 Ω max.


Non-linearity: ±0.1% typ.

Temperature coefficient: Zero point 100 ppm/°C typ.


Connector: 3-pin (VOUT, IOUT, COM)

3.3.3. Installing an option

- 1. Remove the two screws that secure the guide rail, and then remove the guide rail.
- 2. Remove the two screws that secure the case.
- 3. Pull the case out from the front panel (holding it as shown).
- 4. Remove unnecessary blank panels with nippers, etc.
- 5. Insert the option board at the position specified on the rear of the front panel.
- 6. Reattach the case and guide rail by reversing the steps above.

4. FRONT PANEL

4.1. Display

Displays a measured or set value. To set the decimal point position, use the function mode ($\mathit{EFB}\ \mathit{I}$). The display is composed of four seven-segment indicators plus a minus sign.

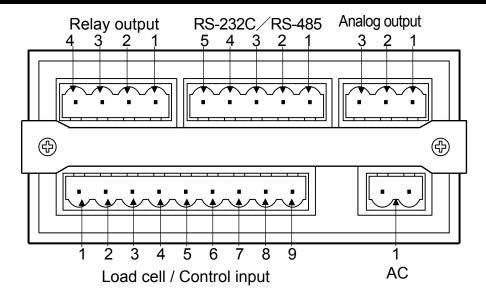
4.2. Status indicators

	Name	Description	
1	HI	Turns on when the measured value is greater than the upper limit (HI).	
2	ок	Turns on when the measured value is equal to or greater than the	
	UK	lower limit and equal to or less than the upper limit.	
3	LO	Turns on when the measured value is less than the lower limit (LO).	
4	DZ	Turns on when adjusting the digital zero.	
5	HOLD	Turns on when a value is being held.	

4.3. **Keys**

Operation	Function
HI +/-	Press to proceed to the upper limit value setting mode. When inputting a numerical value, press to change the polarity.
LO	Press to proceed to the lower limit value setting mode. When inputting a numerical value, press to cancel the setting.
ZERO >	Press to turn the digital zero on. When inputting a numerical value, press to shift the position of the blinking digit to the right or change the function group.
HI + ZERO >	Press to turn the digital zero off.
(HOLD	Press to turn holding on or off. When inputting a numerical value, press to change the blinking digit or change the function parameter.
PRINT	Press to output the serial data (print). When inputting a numerical value, press to enter the setting.
HI +/- + PRINT	Press to proceed to the calibration mode.
LO + PRINT	Press to proceed to the function selection mode.
HI +/- + LO + PRINT	Press to proceed to the selection mode in the check mode.

^{*} To change the digital zero operation, use the function (LF 11).


To protect against accidental operation, press the $\begin{bmatrix} HI \\ +/- \end{bmatrix}$ + $\begin{bmatrix} ZERO \\ > \end{bmatrix}$ keys or press and hold the $\begin{bmatrix} ZERO \\ > \end{bmatrix}$ key for one or more seconds to turn the digital zero on.

4.4. Operation mode

- Upper / lower limit setting mode
 Use this mode to set the upper and lower limit of the comparator.
- Calibration mode

 Use this mode to perform zero and span calibration with an actual load.
- Function setting mode
 Use this mode for setting functions.
- Check mode
 Use this mode to confirm input and output operation.

5. REAR PANEL

⚠CAUTION

Confirm the terminal numbers when making connections.

When making connections, confirm the terminal numbers printed on the side of the terminal block and on the top of the indicator casing.

5.1. Connector function

5.1.1 AC input connector

(1) AC Connect the AC power cord.

The power requirement is 100 VAC to 240 VAC, 50/60 Hz.

⚠CAUTION

When making connections,

- Switch off the power of all the instruments used.
- Keep cables away from power cables and other sources of electrical noise.

5.1.2 Load cell / Control input connector

Load cell

- (1) SHLD Connect the shielded cable of the sensor cable.
- (2) SIG- Negative signal input terminal for the sensors.
- (3) SIG+ Positive signal input terminal for the sensors.
- (4) EXC- Negative excitation terminal for the sensors.
- (5) EXC+ Positive excitation terminal for the sensors.

Control input

(6) COM Input COMMON terminal.

(7) LATCH Inputs the latching signal for the function settings and outputs.

(8) HOLD Inputs the hold signal.

(9) ZERO Inputs the zero correction signal.

5.1.3 Relay output connector (Option)

(1) COM Relay output COMMON terminal

(2) LO Relay LO output terminal

Outputs LO when the measured value is less than the lower limit.

(3) OK Relay OK output terminal

Outputs OK when the measured value is equal to or greater than the

lower limit and equal to or less than the upper limit.

(4) HI Relay HI output terminal

Outputs HI when the measured value is greater than the upper limit.

⚠CAUTION

Comparator output

To prevent damage, do not exceed the rated capacities of the output relays.
To protect the output relays, use a varistor, CR circuits or diodes.

5.1.4 Serial communication connector (Option)

In the case of RS-232C:

(1) IC Connected internally (Do not use)

(2) IC Connected internally (Do not use)

(3) SG Signal ground terminal

(4) TxD Sending terminal

(5) RxD Receiving terminal

In the case of RS-485 (Two wire connection):

(1) B B terminal

(2) A A terminal

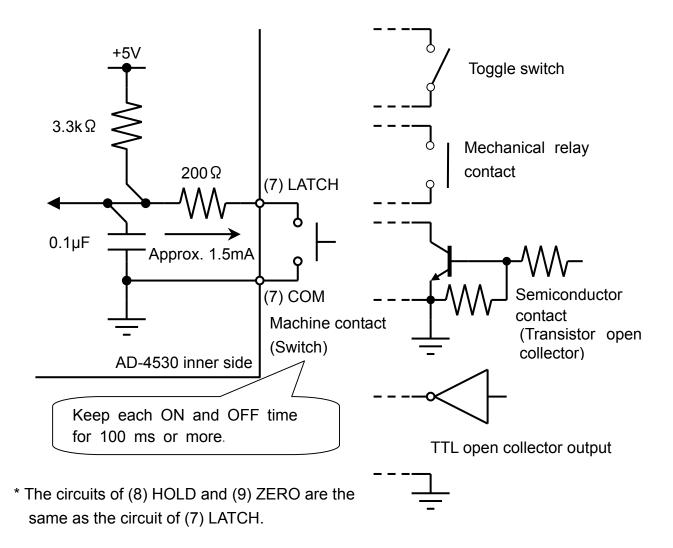
(3) SG Signal ground terminal

(4) B B terminal

(5) A A terminal

These terminals are connected internally and can be used for a terminating resistor or multi-drop connection.

^{*} Each of the A and B connections has two terminals.


5.1.5 Analog output connector (Option)

(1) COM COMMON terminal of the analog output

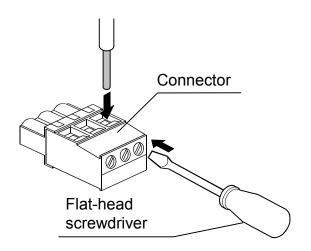
(2) IOUT Analog current output terminal

(3) VOUT Analog voltage output terminal

5.2. Equivalent circuit figure of control input section

CAUTION

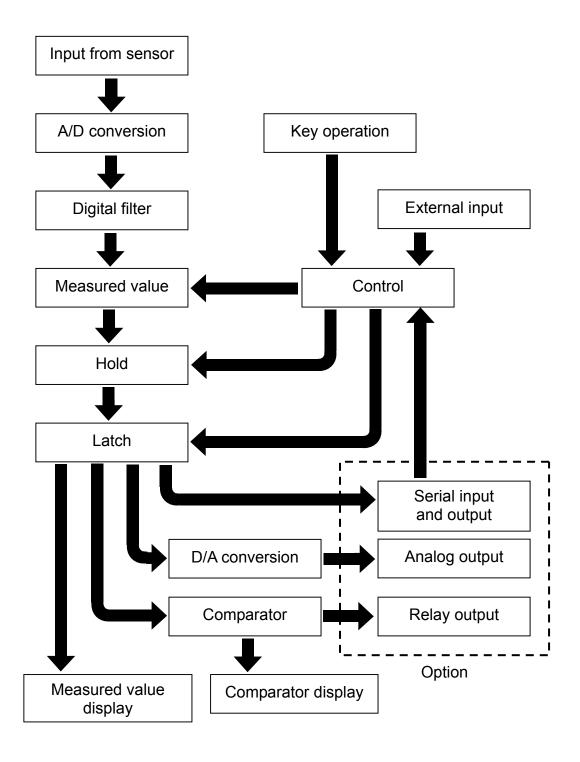
When connecting the input terminal:


- Select a switching element of the non-voltage input type, such as a mechanical contact or semiconductor switch.
- Use the leakage of the switching element, when OFF, of 30 µA or less.

5.3. Attaching the connector

Wire size 12 to 24 (AWG)

Stripping length 6 to 7 mm


Tightening torque 0.5 to 0.6 Nm

6. COMPONENTS AND FUNCTIONS

The following flowchart shows how the functions of the AD-4530 are executed.

6.1. Flowchart

6.2. Descriptions of functions

6.2.1. Digital filter

The selection range of the cutoff frequency is 2.5 Hz to 0.1 Hz or none.

6.2.2. Digital zero

The digital zero function sets the measured value to zero.

6.2.3. Hold function

The AD-4530 has four hold modes: sample hold, peak hold, bottom hold and bipolar peak hold. Select a hold mode in the function mode (FDD3).

6.2.4. Latch function

The AD-4530 can latch the value or output, set by the function (FDD4), by the ON/OFF timing of the external LATCH input.

The latch operation occurs after processing of the hold operation.

6.2.5. Comparator function

The comparator function compares the measured value against set values, displays the comparison with LEDs, and outputs the comparison results (HI, OK or LO) from the rear panel relay output terminals.

6.2.6. Relay output (Option)

The results of the comparator operation can be output by the relay output terminal.

6.2.7. Analog output (Option)

The analog output outputs data by converting the measured value to an analog voltage DAV (0V to 10V) or analog current DAI (4mA to 20mA). (F20 I to F204)

6.2.8. Serial input and output (Option)

By using the RS-232C or RS-485, outputting the measured value, receiving commands and setting functions are available.

7. CALIBRATION

The AD-4530 measures voltage signals from sensors and displays the values. Calibration is performed so that the AD-4530 performs correctly.

The decimal point ([FB]), minimum scale value ([FB]) and rated capacity ([FB]) are set using the function mode.

The zero point input voltage (LFD4), the span input voltage (LFD5) and the display value for the span input voltage (*LFDb*) are set using the calibration mode.

Calibration setting by the function mode is also available. (Digital calibration)

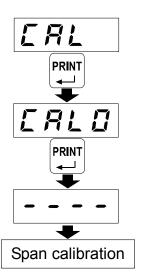
- * During calibration, maintain a stable environment to prevent calibration errors.
- * You can confirm stabilization by confirming that the HOLD LED is on.
- * The decimal point blinks to indicate that a number is being displayed, not a measured value.

Calibration Modes 7.1.

HI PRINT keys to enter the calibration mode. In the measurement mode, press the PRINT

LO Return to the measurement mode. **ESC**

Enter the zero point calibration mode.

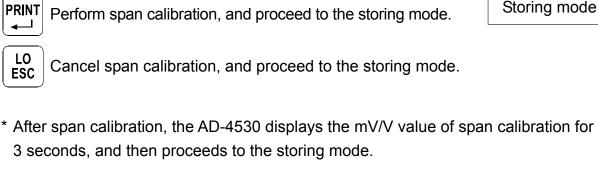

7.1.1. Zero point calibration mode

With nothing on the load cell, wait for it to stabilize, and then PRINT press the kev.

Perform zero point calibration, and PRINT proceed to the span calibration mode.

Cancel zero point calibration, and LO **ESC** proceed to the span calibration mode.

HI Hold to display the mV/V of the zero point.

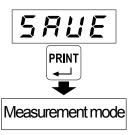

7.1.2. Span calibration mode

Apply the actual load for span calibration to the load cell, and then input the value to be displayed when the load is applied. After stabilization, press the \int_{PRINT} key.

ZERO Select the digit to be changed.

HOLD Increase the value of the digit to be changed.

Ш Change the polarity. +/-



7.1.3. Storing calibration mode

Store the calibration zero, span and displayed value acquired. When calibration was not performed, data is not stored.

PRINT Store the data acquired, and return to the measurement mode.

Do not store the data acquired, and return to the LO **ESC** measurement mode.

PRINT

7.2. Calibration Errors

Display	Cause	Remedy
C E2	Voltage at zero point calibration was	Confirm the rating and connection
L	too far in the positive direction.	of the load cell.
C E3	Voltage at zero point calibration was	
	too far in the negative direction.	
C E4	The value of the calibration weight	Use a proper calibration weight.
	exceeds the rated capacity.	
C E5	The value of the calibration weight is	Use a proper calibration weight.
L E3	less than the minimum scale value.	
C E6	The load cell sensitivity is insufficient.	Confirm the load cell connection.
		Use a proper calibration weight.
C E7	Voltage at span calibration is less	Confirm the load cell connection.
	than the zero point.	
	When adding a load of the rated	Use a load cell with a greater
C E8	capacity, the load cell output voltage	rated capacity or set a smaller
	is too high.	rated capacity value.

8. FUNCTION MODE

Use the function mode to set various functions and data. The set values are saved in non-volatile memory and are maintained even if the power is switched off.

8.1. Structure of Functions

The first 2 characters of the Function No. are the function group. The last 2 characters of the Function No. are the function item.

- [F Calibration function
- FD Basic function
- F I Comparator function

Use this function to set the comparator operation.

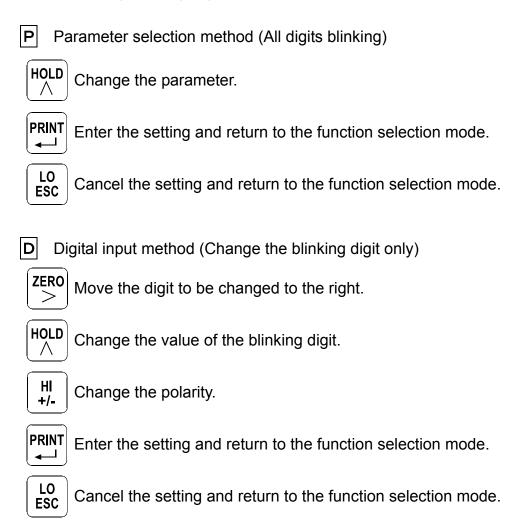
- Analog output function

 Use this function to set the output value of the analog voltage output and analog current output.
- F3,F4 Serial communication function
 Use this function to set the RS-232C and RS-485.
- * Set the zero point input voltage ([FBH]), the span input voltage ([FBH]) and the display value for the span input voltage ([FBH]) in the calibration mode.
- * Set the upper limit value (F 10 1) and lower limit value (F 102) in the comparator mode.
- * When setting a function, the decimal point blinks to indicate that a number is being displayed, not a measured value.

8.2. Key operation

In the measurement mode, press the $\begin{bmatrix} LO \\ ESC \end{bmatrix}$ + $\begin{bmatrix} PRINT \\ \longleftarrow \end{bmatrix}$ keys to enter the function selection mode.

8.2.1. Function selection mode


Select the function group. (First 2 characters)

Select the function item. (Last 2 characters)

PRINT Enter the setting changing mode.

Save the setting in non-volatile memory, and then return to the measurement mode.

8.2.2. Setting changing mode (Two methods)

8.3. Function Items

8.3.1. Calibration (C function)

Function No. Default value			
Setting range	Function	Description	Setting type
CFD I 0 to 3	Decimal point position	Decimal point position of the measured value: 0:0000 1:0000 2:0000 3:0000	
<i>EF 0 2</i> 1 to 50	Minimum scale value	Minimum division (d) of the measured value: 1:1	/ P
<i>[F[]]</i> 1 to 9999	Rated capacity	Measurement is possible up to the value of this setting plus 8 d (8 minimum divisions). Decimal point position depends on $\mathcal{L}FDI$.	7000 D
-7.000 to 7.000	Input voltage of zero point	Input voltage from the load cell at zero point. (Unit: mV/V)	0,000 D
0.001 to 9.999	Input voltage of span	Input voltage from the load cell at span (measurement point - zero point). (Unit: mV/V)	7,000 D
<i>FDE</i> -9999 to 9999	Display value for input voltage of span	Display value for span (measurement point - zero point). Decimal point position depends on <i>EFD I</i> .	ם <i>ס</i> ם ר D
<i>EF</i> 0 7 0 to 100	Zero adjustment range	Range to enable zero adjustment by the digital zero. Expressed in percent of the rated capacity with the calibration zero point as the center.	100 D
<i>CFOB</i> 0.0 to 5.0	Zero tracking time	Performed in combination with zero tracking width. (Unit: second) When \(\mathbb{Q}_{\oldsymbol{\oldsymbol{O}}} \mathbb{O}_{\oldsymbol{\oldsymbol{O}}} \mathbb{O}_{\oldsymbol{\oldsymbol{O}}} \mathbb{O}_{\oldsymbol{\oldsymbol{O}}} \mathbb{O}_{\oldsymbol{O}} \mathbb{O}_{\oldsymbol{O}} \mathbb{O}_{\oldsymbol{O}}} \)	0.0 D
<i>CF</i>	Zero tracking width	Performed in combination with zero tracking time. (Unit: 0.1 d) When $\Omega\Omega$, zero tracking is not performed.	0.0 D
<i>CF ID</i> 0 to 2	Power on zero	Digital zero when turning power on: ☐: Digital zero off ☐: Perform digital zero again ☐: Use state when the power was turned off	<i>0</i>
<i>EF I I</i> 1 to 3	Zero operation	## In all settings: When it is on, off with ## IZERO For provided the setting ### IZERO For provided the setting ##	/ P
<i>EF 12</i> 1 to 2	Zero of the I/O input	I: On / Off depends on the I/O input. ☐: Only digital zero on (no off)	/ P

8.3.2. Basic Function

Function No. Setting range	⊢ inction	Description	Default value Setting type
F 🛭 🗘 I 0000 to 1111	Disable key	Each digit of the setting corresponds to a key switch. Only available in the measurement mode. Key assignment: : Enabled	OOOO (Binary) D
F D D Z 0 to 11	Digital filter	Cutoff frequency: ☐: Off	Ч P
F 🛮 🛈 🗗 0 to 4	Hold mode	☐: Off I: Sample hold I: Peak hold I: Bottom hold I: Bipolar peak hold	/ P
F 🛭 🗗 4 0000 to 1111	LATCH function	Function corresponds to an external input latch. Setting and latch Assignment:	<i>0000</i> (Binary) D

^{*}If you want to confirm the measured value when setting the digital filter (FDD2), press the HI key.

When the measured value is displayed, the OK LED blinks and the display can be set to zero by pressing the ZERO key.

Press the HI key to return the setting display.

8.3.3. Comparator

o.s.s. Comparator			
Function No. Setting range	Function	Description	Default value Setting type
F ID I -9999 to 9999	Upper limit value	Upper limit value of comparator. Decimal point position depends on <i>EFD 1</i> .	0000 D
<i>F 1□2</i> -9999 to 9999	Lower limit value	Lower limit value of comparator. Decimal point position depends on <i>EFD 1</i> .	0000 D
F 103 0 to 2	Comparator mode	☐:OffI:On when the measured value is not near zero☐:Always on	₽
F 104 -9999 to 9999	Near zero	Set the near zero range for the comparator mode.	0000 D
F 105 1 to 3	Hysteresis mode	Hysteresis direction: I:Upward 2-level judgment I:Upper / lower limit judgment I:Downward 2-level judgment	⊡ ∿
<i>F IDE</i> 0.0 to 5.0	Hysteresis time	Set the hysteresis time by units of 0.1 seconds. When $\Omega.\Omega$, the hysteresis is not used.	<u>0</u> .0
F 107 00 to 99	Hysteresis width	Set the hysteresis width to a two-digit value. When \$\mathbb{D} \mathbb{O}\$, the hysteresis is not used.	99 D

8.3.4. Analog

<u> </u>			
Function No. Setting range	Filinction	Description	Default value Setting type
<i>F 2□ 1</i> -9999 to 9999	0 V output	Measured value at DAV 0V output. Decimal point position depends on <i>EFD 1</i> .	0000 D
F202 -9999 to 9999	10 V output	Measured value at DAV 10V output. Decimal point position depends on <i>EFD 1</i> .	1000 D
F203 -9999 to 9999	4 mA output	Measured value at DAI 4 mA output. Decimal point position depends on <i>EFD I</i> .	0000 D
<i>F2□</i> 4 -9999 to 9999	20 mA output	Measured value at DAI 20 mA output. Decimal point position depends on <i>EFD I</i> .	1000 D

8.3.5. Serial Communication

o.o.o. Ochar Gommanication			
Function No Setting range	Function	Description	Default value Setting type
F 30 1 2.4 to 38.4	Baud rate	2.4: 2400 bps 4.8: 4800 bps 9.6: 9600 bps 19.2:19200 bps 38.4:38400 bps	2.4 P
F302	Data bit	7 :7 bits	7
7 to 8	length	B :8 bits	P
F 3 0 3 0 to 2	Parity	☐:NoneI: Oddट: Even	2 P
F 304	Stop bit	<i>I</i> :1 bit	/
1 to 2	-		P
F 305 1 to 2	Terminator	I:CRLF ⊇:CR	
F 306	Communication		P 2
1 to 2	mode	2: Manual print	<u> [</u>
F 3D 7 00 to 99	Model No.	ID that is added to the serial output. When setting is \$\mathcal{D}\mathcal{D}\$, the ID is not added.	00 D
F40 I F403 F404 F405 00 to 7F	Unit character1 Unit character2 Unit character3 Unit character4 Unit character5	Unit character added to serial output. Set with the hexadecimal ASCII code. All characters after \$\mathbb{D} \mathbb{D}\$ are ignored.	00 00 00 00 00 (Hexadecimal)

8.3.6. Error

Display	Cause	Remedy
Ad E	The data cannot be acquired from	Repair is required.
110 L	A/D converter.	
	Correct data cannot be read from	Perform initialization.
EEPE	EEPROM.	If the initialization does not clear the
		error, repair is required.
CALE	Calibration data error.	Perform calibration.
E E*	Calibration error.	Refer to "7.2.Calibration Errors".
и г	A setting value is out of range.	Check setting values and correct if
dt E		necessary.

8.3.7. ASCII code (20h~7Fh)

Hexadecimal	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
20	SP	!	"	#	\$	%	&	•	()	*	+	,	-		1
30	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
40	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
50	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	[\]	٨	_
60	,	а	b	С	d	е	f	g	h	i	j	k	-	m	n	0
70	р	q	r	s	t	u	V	w	х	У	Z	{		}	~	DL

20 SP is space 7F DL is DEL

9. DIGITAL ZERO (DZ)

The digital zero function sets the measured value to zero. When measuring a load, it can be used as the tare, etc.

While using this function, the DZ LED turns on.

9.1. Operating by key

* The operating procedure depends on the setting of (EF 11).

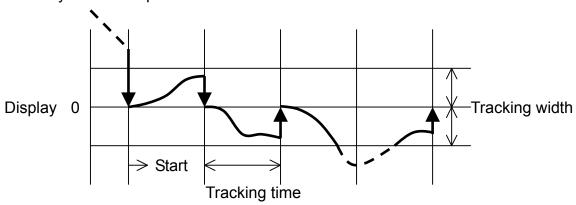
Press the $\begin{bmatrix} HI \\ +/- \end{bmatrix} + \begin{bmatrix} ZERO \\ > \end{bmatrix}$ keys or press and hold the $\begin{bmatrix} ZERO \\ > \end{bmatrix}$ key for more than 1 second, turn on the DZ function.

When it is turned on, the display is set to zero.

9.2. Operating by I/O input

Whether the DZ function is ON or OFF depends on the operation of the zero terminal of the I/O input.

When the zero terminal is on (connected to the Com terminal), the DZ function is turned on and the display is set to zero.


You can disable the digital zero off in the function mode (*LF 12*).

9.3. Zero tracking

Using the zero tracking function, the AD-4530 updates the zero point automatically by sensing the zero point movement.

Zero tracking functions only when digital zero is turned on. Set the zero tracking time ([FBB]) and zero tracking width ([FBB]) by setting the function.

- * When the zero point is over the zero correction range, zero tracking is not performed.
- * When refreshing the zero point using the zero tracking function, backup to non-volatile memory will not be performed.

Power On Zero 9.4.

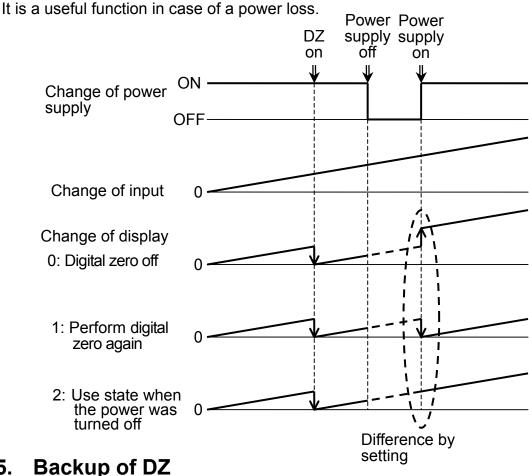
Select the digital zero for when the power is turned on. (*LF ID*)

0: Digital zero off

Measurement is based on the zero point of the calibration.

Use with the measurement of an absolute value such as force measurement.

1: Perform digital zero again


Measurement is based on the zero point when the power is turned on.

Use with weight measurement etc.

2: Use the state when the power was turned off

Measurement is based on the DZ.

Use with measurements that require a long time such as a hopper scale.

9.5.

The DZ value is maintained in non-volatile memory (EEPROM).

Writing up to 10,000,000 times is available, so keep track of use frequency.

If the available DZ memory is 10% or less, the LED of the digital zero DZ blinks.

With the setting ($[F \ ID=2]$), the backup memory is refreshed only when refreshed by key operation or command.

(When refreshing the zero point using the zero tracking function, the backup memory is not refreshed.)

10. HOLD FUNCTION

The AD-4530 has four hold modes: sample hold, peak hold, bottom hold and bipolar peak hold. A hold mode can be selected in the function mode (FDD3).

10.1. Basic function

Start the hold function by pressing the $\left[\begin{array}{c} \text{HOLD} \\ \wedge \end{array}\right]$ key, setting the hold terminal of the external input to on, or a serial communication command.

10.1.1. Operation by using the \bigwedge^{HOLD} key

Press the HOLD key. The hold function starts and the AD-4530 holds the displayed value.

While the display is in the hold mode, pressing the key again cancels the hold function, and the AD-4530 displays the measured value.

10.1.2. Operation using the external input hold terminal

When the external hold input terminal is turned on (contact input), the hold function starts.

To hold the displayed value at this time, keep the external input hold terminal in the on state.

To cancel the display hold, set the external input hold terminal to the off state.

10.1.3. Operation using a serial communication command

The hold function is started by the hold on command " H_{RF}^{c} " of the serial communication and is canceled by the hold off command " C_{RF}^{c} ".

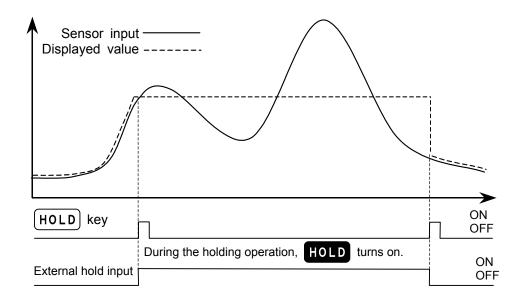
10.2. Hold indicator

The AD-4530 displays that it is in the hold state by turning the HOLD LED on.

10.3. Priority when inputting hold

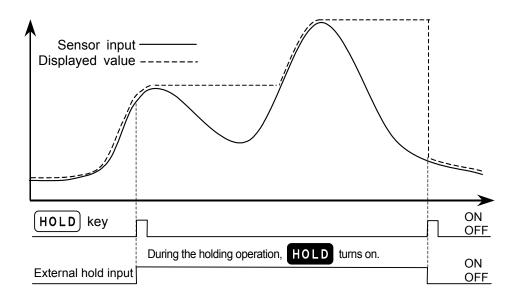
When inputting a hold, the external input hold terminal has a higher priority than any other operation.

10.4. Over value during hold

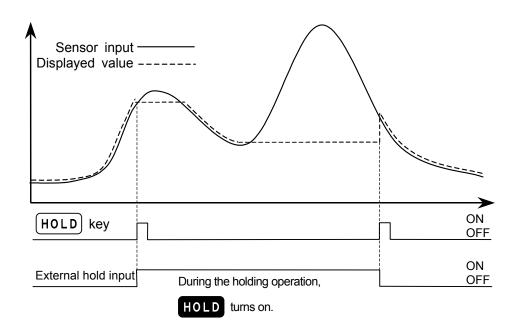

If the value is over during the hold, the display is blank.

Ensure that a function with non-displayed data, such as the comparator or output, is processed based on the hold data.

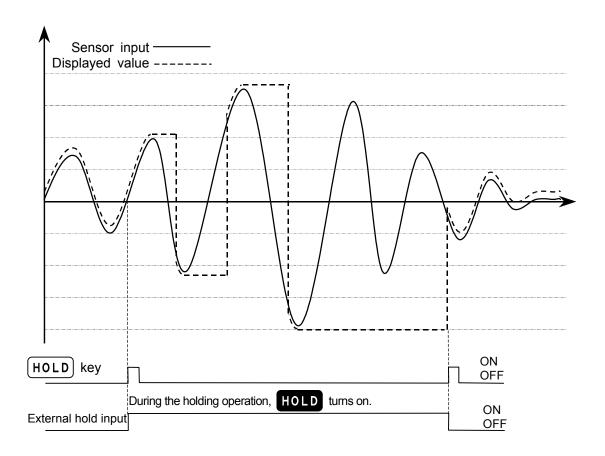
10.5. Hold Modes


10.5.1. Sample hold mode

Holds the display and output when receiving a hold input.

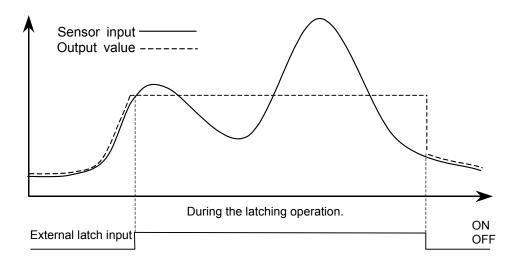

10.5.2. Peak hold mode

Holds the peak value when receiving a hold input.


10.5.3. Bottom hold mode

Holds the bottom value when receiving a hold input.

10.5.4. Bipolar peak hold mode


Holds the absolute peak value when receiving a hold input.

11. LATCH

The AD-4530 can latch the value and output that are set by the function (FDDY) in response to the external latch input.

With regard to the output, first the hold operation is processed, then the latch operation.

12. COMPARATOR FUNCTION

The comparator function compares the measured value against the set values, and the results are displayed by the LEDs. If the relay option is installed, it outputs the comparison results (HI, OK or LO) from the rear panel relay output terminals.

12.1. Detailed description of the comparator mode

The relation between the comparison outputs and the upper and lower limit setting values is as shown below:

Comparison result	Comparison condition						
HI	Upper limit < Measured value						
OK	Lower limit ≤ Measured value ≤ Upper limit						
LO	Measured value < Lower limit						

^{*} HI is output with a positive over limit, LO is output with a negative over limit.

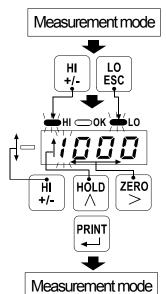
- Upper limit and lower limit values can be negative.
 For example, if the upper limit value is -1000 and the lower limit value is -2000, HI is output for the measured value of -500 and LO is output for the measured value of -2500.
- □ Make sure that the upper limit value is greater than the lower limit value.

12.2. Setting the upper and lower limit value

Set the upper limit value (F ID I) and lower limit value (F ID I) of the function using the following procedure. In the measurement mode, press the the setting mode for the upper or lower limit value.

In the setting mode for the upper or lower limit value, the AD-4530 blinks the HI or LO LED. (The relay output is not affected.)

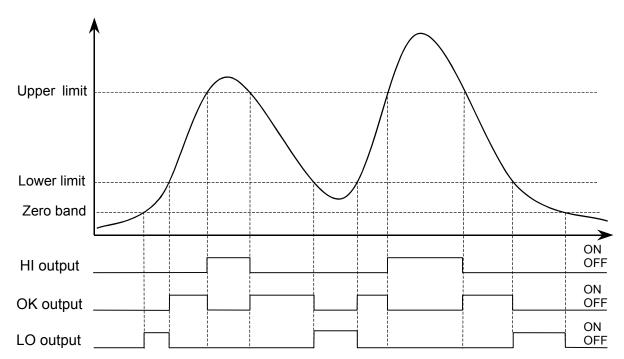
The setting value is displayed. Set the value by operating the key.


Shift the blinking digit to the value to be changed.

HOLD Change the value of the blinking digit.

HI Change the polarity.

PRINT Store the setting, and return to the measurement mode.


LO Cancel the setting, and return to the measurement mode.

- * If a key is not pressed within 20 seconds in the upper or lower limit setting mode, the AD-4530 will cancel the setting, and return to the measurement mode.
- * The decimal point blinks to indicate that a number is being displayed, not a measured value.

12.3. Example of the comparator mode

Continuous comparison excluding the zero band

12.4. Hysteresis

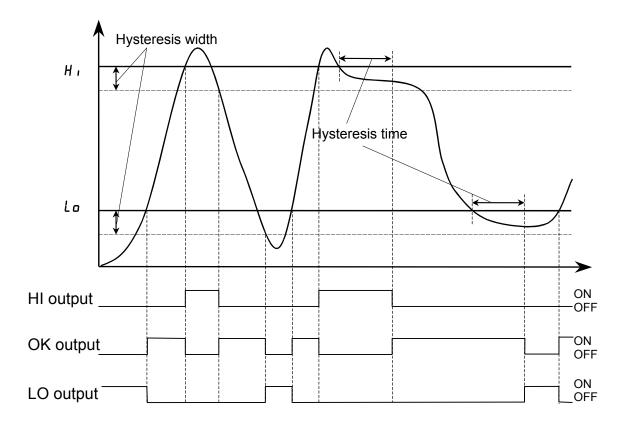
A hysteresis width and time is provided for the output relay on/off timing to prevent the output terminals from chattering.

When the measured value exceeds the set value, the relay is turned on. If the measured value falls below the set value and it is further reduced by the hysteresis width, or if the hysteresis time has elapsed, the relay is turned off.

The hysteresis mode, time and width can be set in the function modes (F 105 to F 107).

12.4.1. Hysteresis upward 2-level judgment (F 105=1)

□ Relation between HI and OK


When the measured value exceeds the set upper limit value, HI is output immediately. Even if the measured value falls below the upper limit value, OK is not output immediately. OK will be output when the measured value falls below the hysteresis width, or when the hysteresis time has been exceeded.

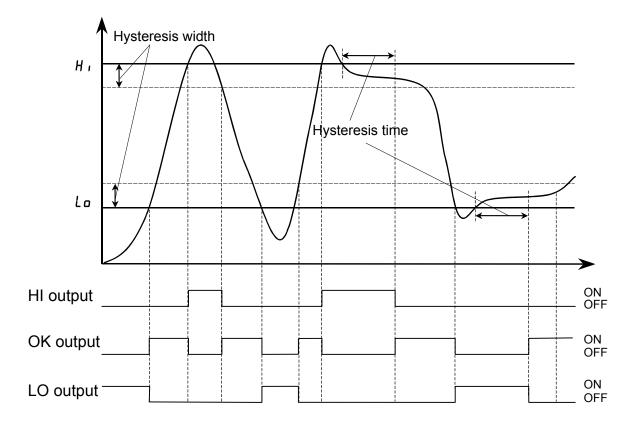
□ Relation between LO and OK

When the measured value exceeds the set lower limit value, OK is output immediately.

Even if the measured value falls below the lower limit value, LO is not output immediately. LO will be output when the measured value falls below the hysteresis width, or when the hysteresis time has been exceeded.

Judgment example

12.4.2. Hysteresis upper/lower limit judgment (*F* /05=≥)


□ Relation between HI and OK

When the measured value exceeds the set upper limit value, HI is output immediately. Even if the measured value falls below the upper limit value, OK is not output immediately. OK will be output when the measured value falls below the hysteresis width, or when the hysteresis time has been exceeded.

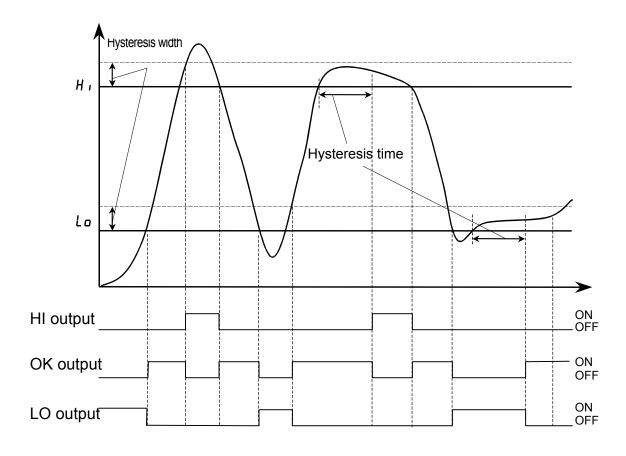
□ Relation between LO and OK

When the measured value falls below the set lower limit value, LO is output immediately. Even if the measured value exceeds the lower limit value, OK is not output immediately. OK will be output when the measured value exceeds the hysteresis width, or when the hysteresis time has been exceeded.

Judgment example

12.4.3. Hysteresis downward 2-level judgment (F 105=3)

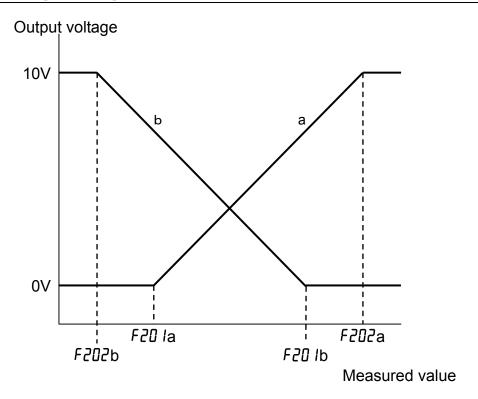
□ Relation between HI and OK

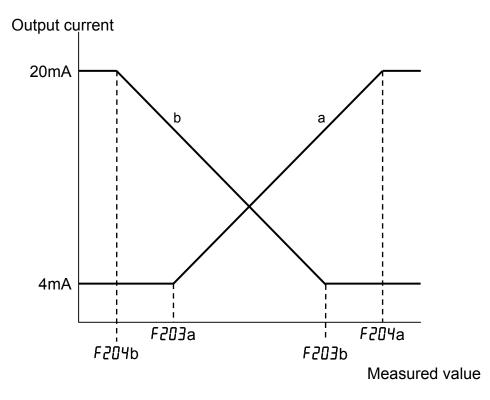

When the measured value falls below the set upper limit value, OK is output immediately.

Even if the measured value exceeds the upper limit value, HI is not output immediately. HI will be output when the measured value exceeds the hysteresis width, or when the hysteresis time has been exceeded.

Relation between LO and OK

When the measured value falls below the set lower limit value, LO is output immediately. Even if the measured value exceeds the lower limit value, OK is not output immediately. OK will be output when the measured value exceeds the hysteresis width, or when the hysteresis time has been exceeded.


Judgment example


13. ANALOG OUTPUT

The analog output outputs data by converting the measured value to an analog voltage DAV (0V to 10V) or an analog current DAI (4mA to 20mA). (F20 I to F204)

13.1. Analog voltage DAV (0V to 10V)

13.2. Analog current DAI (4mA to 20mA)

14. SERIAL INPUT AND OUTPUT

14.1. Data output format

Normal measured value WT, $\pm 12.34^{c}_{RF}$ No decimal point WT, $\pm 01234^{c}_{RF}$ When over limit OL, $\pm 99.99^{c}_{RF}$

When adding the instrument number @NNWT, ±12.34^C_{RF}

(NN is the number set with F307)

When adding the unit WT, ±12.34UUUUU^C_{RF}

(U is the character code set with F40 I to F405)

14.2. Command or response

When receiving an incorrect command, the response is "?". When a command cannot be performed, the response is "I".

When adding the instrument identification number (ID), add "@NN" (NN is the number set with F307) before the command. In a case where the command does not have the "@NN", or is an incorrect number, there will be no response. The "@NN" precedes the response.

14.2.1. Data request

Output the display data of when receiving the command.

Command R
Command example $R_{RF}^{c_L}$

Response example WT,±12.34^C_{RF}

For details about the response, refer to "14.1. Data output format".

14.2.2. Zero command

Perform zero operation.

 $\begin{array}{ccc} \text{Command} & & Z \\ \text{Command example} & & Z^{\text{C}}_{\text{R}}{}_{\text{F}} \\ \text{Response example} & & Z^{\text{C}}_{\text{R}}{}_{\text{F}} \end{array}$

14.2.3. Hold ON command

Start the hold function.

Command H
Command example H_{RF}^{CL} Response example H_{RF}^{CL}

14.2.4. Hold OFF command

Cancel the hold function.

Command C

Command example C_{RF}^{CL} Response example C_{RF}^{CL}

14.2.5. CAL zero command

Set the input voltage ([FDH]) at the zero point of the CAL using the input data when receiving the command.

 $\begin{array}{ccc} \text{Command} & & \text{CZ} \\ \text{Command example} & & \text{CZ}^{\text{C}}_{\text{R}}{}^{\text{L}}_{\text{F}} \\ \text{Response example} & & \text{CZ}^{\text{C}}_{\text{R}}{}^{\text{L}}_{\text{F}} \\ \end{array}$

14.2.6. CAL span command

Set the input voltage (*LFD*5) at the span of the CAL using the input data when receiving the command.

Command CS
Command example CS_{RF}^{c} Response example CS_{RF}^{c}

14.2.7. Function reading command

Confirm the function setting.

The query "?" function number is four characters.

Command example ?F123^C_{RF}

Response example F123,±4567^C_{R F}

14.2.8. Function setting command

Change the function setting.

The function number is four characters and the polarity and setting value is four characters.

Command example F123, \pm 4567 $^{\text{C}}_{\text{R}}{}^{\text{L}}_{\text{F}}$ Response example F123, \pm 4567 $^{\text{C}}_{\text{R}}{}^{\text{L}}_{\text{F}}$

15. MAINTENANCE

15.1. Error display

When an error is displayed, perform the appropriate remedy.

Display	Cause	Remedy
Ad E	The data cannot be acquired from	Repair is required.
70 6	A/D converter.	
	Correct data cannot be read from	Perform initialization.
EEPE	EEPROM.	If the initialization does not clear the
		error, repair is required.
CALE	Calibration data error.	Perform calibration.
E E*	Calibration error.	Refer to "7.2.Calibration Errors".
dE E	A setting value is out of range.	Check setting values and correct if
00 0		necessary.

Display	Cause	Remedy
C E2	Voltage at zero point calibration was	Confirm the rating and connection of
	too far in the positive direction.	the load cell.
C E3	Voltage at zero point calibration was	
	too far in the negative direction.	
C E4	The value of the calibration weight	Use a proper calibration weight.
	exceeds the rated capacity.	
	The value of the calibration weight	Use a proper calibration weight.
C E5	is less than the minimum scale	
	value.	
C E6	The load cell sensitivity is insufficient.	Confirm the load cell connection.
		Use a proper calibration weight.
C E7	Voltage at span calibration is less	Confirm the load cell connection.
	than the zero point.	
	When adding a load of the rated	Use a load cell with a greater rated
C EB	capacity, the load cell output voltage	capacity or set a smaller rated
	is too high.	capacity value.

15.2. Checking operation

To confirm the operation of the display, key switch and external input and output. Use the check mode.

* The decimal point blinks to indicate that a number is being displayed, not a measured value

15.2.1. Entering check mode (Selection mode)

In the measurement mode, press the

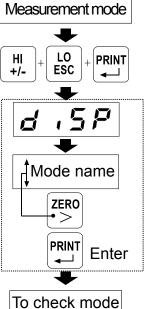
HI +/- + LO ESC +

PRINT

keys to enter the selection mode for the check mode.

ZERO >

Change the item to be checked.


PRINT

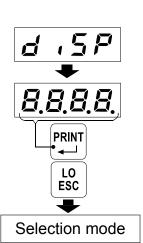
Enter the check mode.

LO ESC

Return to the measurement mode.

15.2.2. Checking the display

Check the display by turning on each segment and the individual LEDs.

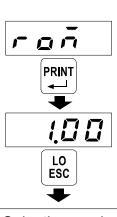

All on / Turn on by digit / Turn on by segment

PRINT

Change the item to be checked. (All on, digit, segment)

LO ESC

Proceed to the selection mode. (Refer to "15.2.1")

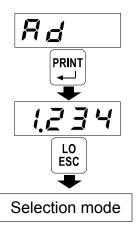


15.2.3. Checking the version

Display the ROM version of the AD-4530.

LO ESC

Proceed to the selection mode. (Refer to "15.2.1")


Selection mode

15.2.4. Checking A/D conversion (mV/V)

Check by displaying the input voltage as mV/V.

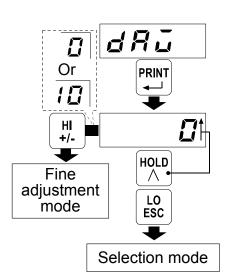
Set the display to zero.

LO Proceed to the selection mode. (Refer to "15.2.1")

15.2.5. Checking DAV voltage

Check the D/A output voltage in 1V steps.

Increase the output voltage in 1V steps.


(The step after 10V is 0V.)

HI +/- Proceed to the fine adjustment mode.

(When 0V or 10V, hold for 5 seconds.)

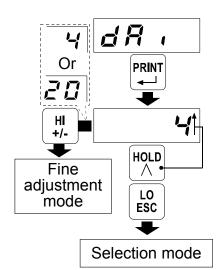
LO ESC Proceed to the selection mode. (Refer to "15.2.1")

* The output voltage can be finely adjusted using the fine adjustment mode.

15.2.6. Checking DAI current

Check the D/A current output in 2 mA steps.

Increase the output current in 2 mA steps.


(The next step after 20 mA is 4 mA.)

HI +/- Proceed to the fine adjustment mode.

(When 4 mA or 20 mA, press for 5 seconds.)

LO Proceed to the selection mode. (Refer to "15.2.1")

* The output voltage can be finely adjusted using the fine adjustment mode.

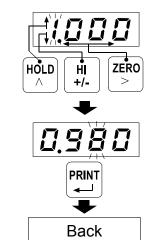
* Fine adjustment mode

The available adjustment unit is 0.001V for DAV voltage and 0.001mA for DAI current. When adjusting the 0V or 4mA, the LO LED blinks.

When adjusting the 10V or 20mA, the HI LED blinks.

Select the adjustment range. (The digit of the range to be adjusted blinks.)

Increase the output within the adjustment range.


(If the blinking digit is 9, the next digit is 0, and the value of the next significant digit is increased.)

Decrease the output with the adjustment range.

(If the blinking digit is 0, the next digit is 9, and the value of the next significant digit is decreased.)

PRINT Set and save the output.

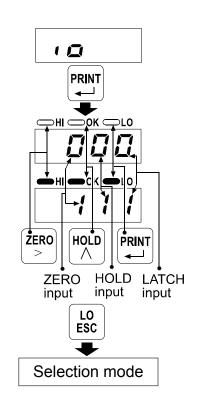
LO ESC Back

CAUTION

During fine adjustment, be sure to base measurements on a high precision voltmeter and milliamp meter. Otherwise, an error in the output value of the AD-4530 may occur.

15.2.7. Checking I/O

Check the control input and comparator output.


Ones ON/OFF(1/0) of ZERO input
Tens ON/OFF(1/0) of HOLD input
Hundreds ON/OFF(1/0) of LATCH input

ZERO HI output and HI blinking

HOLD OK output and OK blinking

PRINT LO output and LO blinking

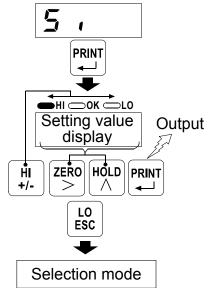
LO Proceed to the selection mode. (Refer to "15.2.1")

15.2.8. Checking the serial data

Check the serial input and output. (RS-232C/RS-485)

"WT,4530" is output with the stream or manual print mode.

When receiving the "R" command, OK turns on.


HI Switch between the stream mode (HI is turned +/- on) or manual print mode (LO is turned on).

While this key is pressed, the baud rate of the setting is displayed.

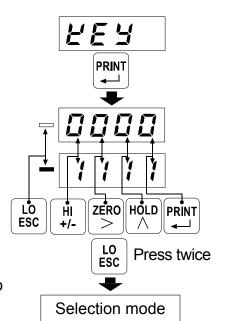
While this key is pressed, the data bit length, parity, stop bit and terminator of the setting is displayed.

Output the data.

LO ESC Proceed to the selection mode. (Refer to "15.2.1")

15.2.9. Checking the keys

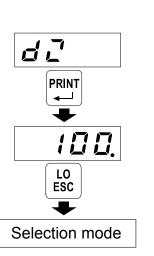
Check the state of each key.



HOLD Tens

ZERO Hundreds

HI Thousands

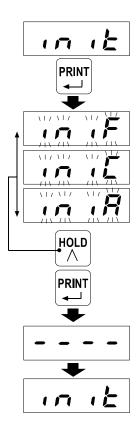

Turn on the minus LED. (If you want to proceed to the selection mode, press this key twice quickly.)

15.2.10. Checking the DZ memory

Check by displaying how much space is available in DZ memory as a percentage.

LO Proceed to selection mode. (Refer to "15.2.1")

15.2.11. Initialization


Initialize each setting value.

Functions initialized:

" in iF" Initialize the F functions.

" ${\it in}\ {\it i}$ L" Initialize the F functions and CF functions.

" In IA" Initialize the F functions and CF functions.
Initialize DAV and DAI data.

16. SETTING LIST

When performing maintenance, use the following list as a memo.

When inquiring about the product, mention the user settings.

16.1. Calibration (C function)

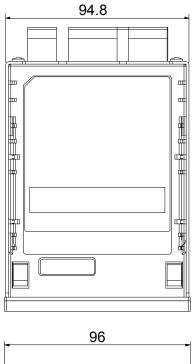
Function No. Setting range	Description	Default value	User setting
<i>EFD I</i> 0 to 3	Decimal point position 10 ⁿ digit.	0	
<i>EFD2</i> 1 to 50	Minimum division; 1:1	ı	
<i>□F□∃</i> 1 to 9999	Rated capacity.	סססר	
<i>FD</i> 4 -7.000 to 7.000	Input voltage from the load cell at zero point. □.□□□mV/V	0.000	
<i>CFD</i> 5 0.001 to 9.999	Input voltage from the load cell at span. □.□□□mV/V	םםם,ר	
<i>EFDE</i> -9999 to 9999	Display value for span.	םם סר	
<i>EFD7</i> 0 to 100	Zero adjustment range. Expressed in percent of the rated capacity with the calibration zero point as the center.	100	
<i>CFDB</i> 0.0 to 5.0	Zero tracking time. (Unit: second) When 🗓 🗓, zero tracking is not performed.	0,0	
<i>EF</i> 19 0.0 to 9.9	Zero tracking width. (Unit: 0.1 d) When $\Omega\Omega$, zero tracking is not performed.	0,0	
<i>CF ID</i> 0 to 2	Power on zero: ☐: Digital zero off ☐: Perform digital zero again ☐: Use state when the power was turned off	0	
<i>EF 11</i> 1 to 3	Zero operation: I: On with	ı	
<i>EF 12</i> 1 to 2	Zero of the I/O input: I: On / Off depends on the I/O input. Only digital zero on (no off)	I	

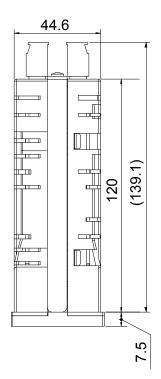
16.2. Basic Functions

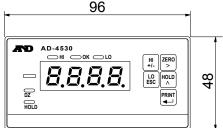
Function No. Setting range	Description	Default value	User setting
<i>F 🛮 🛈 I</i> 0000 to 1111	Disable keys: ☐: Enabled I: Disabled	OOOO (Binary)	
<i>F D D 2</i> 0 to 11	Digital filter: ☐: Off	4	
F 🛮 🗗 🗗 0 to 4	Hold mode: ☐: Off I: Sample hold ☐: Peak hold ☐: Bottom hold Y: Bipolar peak hold	1	
F 🛮 🖰 Ч 0000 to 1111	LATCH function: D: Off I: On	OOOO (Binary)	

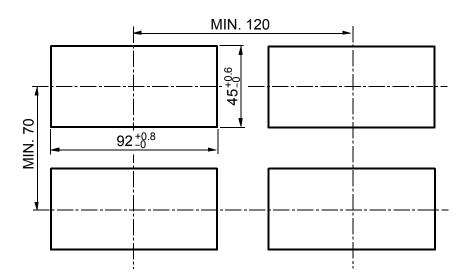
16.3. Comparator

Function No. Setting range	Description	Default value	User setting
F ID I -9999 to 9999	Upper limit value of comparator.	0000	
<i>F 102</i> -9999 to 9999	Lower limit value of comparator.	0000	
F 103 0 to 2	Comparator mode: ☐:Off I:On when the measured value is not near zero ☐:Always on	2	
F ID4 -9999 to 9999	Set the near zero range for the comparator mode.	0000	
F 105 1 to 3	Hysteresis direction: I:Upward 2-level judgment I:Upper / lower limit judgment I:Downward 2-level judgment	2	
<i>F IDE</i> 0.0 to 5.0	Hysteresis time. (Unit: 0.1 second) When D.D , the hysteresis is not used.	0,0	
F 107 00 to 99	Hysteresis width. (d) When 🗓 🗓, the hysteresis is not used.	99	


16.4. Analog


Function No.	Description	Default value	User setting
Setting range			
-9999 to 9999	DAV 0V output	0000	
F202	DAV 10V output	1000	
-9999 to 9999	DAV 10V Output	000	
F203	DAI 4 mA output	0000	
-9999 to 9999	DAI 4 IIIA output	טטטט	
F204	DAI 20 mA output	1000	
-9999 to 9999	DAI 20 IIIA Output	טטטי	


16.5. Serial Communication


Function No. Setting range	Description	Default value	User setting
F 3 1 1 2.4 to 38.4	Baud rate: 2.4: 2400 bps 4.8: 4800 bps 9.6: 9600 bps 19.2:19200 bps 38.4:38400 bps	2.4	
F 302 7 to 8	Data bit length: 7:7 bits 8:8 bits	7	
F 3 🛮 3 0 to 2	Parity: ☐:None I: Odd Z: Even	2	
F 30 4 1 to 2	Stop bit: I:1 bit 2:2 bits	1	
F 305 1 to 2	Terminator: I:CRLF 2:CR	1	
F 306 1 to 2	Communication mode: I: Stream I: Manual print	1	
<i>F 307</i> 00 to 99	Model No. When set to □□ , the ID is not added.	00	
F 40 1 F 402 F 403 F 404 F 405 00 to 7F	Unit character (5 character) All characters after 🛛 🖨 are ignored.	00 00 00 00 00 (Hexadecimal)	

17. EXTERNAL DIMENSIONS

Panel cutout dimensions / Separation

*Maintain the intervals above when installing

UNIT: mm

MEMO

A&D Company, Limited

3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013, JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-6148

A&D ENGINEERING, INC.

1756 Automation Parkway, San Jose, California 95131, U.S.A. Telephone: [1] (408) 263-5333 Fax: [1] (408)263-0119

A&D INSTRUMENTS LIMITED

Unit 24/26 Blacklands Way, Abingdon Business Park, Abingdon, Oxfordshire OX14 1DY United Kingdo Telephone: [44] (1235) 550420 Fax: [44] (1235) 550485

A&D AUSTRALASIA PTY LTD

32 Dew Street, Thebarton, South Australia 5031, AUSTRALIA Telephone: [61] (8) 8301-8100 Fax: [61] (8) 8352-7409

A&D KOREA Limited 한국에이.엔.디(주)

대한민국 서울시 영등포구 여의도동 36-2 맨하탄 빌딩 8층 우편 번호 150-749 (Manhattan Building 8th Floor, 36-2 Yoido-dong, Youngdeungpo-gu, Seoul, 150-749 Korea) 전화: [82] (2) 780-4101 팩스: [82] (2) 782-4280

OOO A&D RUS OOO "ЭЙ энд ДИ РУС"

121357, Российская Федерация, г.Москва, ул. Верейская, дом 17 (Business-Center "Vereyskaya Plaza-2" 121357, Russian Federation, Moscow, Vereyskaya Street 17) тел.: [7] (495) 937-33-44 факс: [7] (495) 937-55-66

A&D INSTRUMENTS INDIA PRIVATE LIMITED 🔻 ऐ&डी इन्स्ट्रयुमेन्ट्स इण्डिया प्रा० लिमिटेड

509, उद्योग विहार , फेस –5, गुड़गांव – 122016, हरियाणा , भारत

(509, Udyog Vihar, Phase-V, Gurgaon – 122 016, Haryana, India) फोन : 91-124-4715555 फैक्स : 91-124-4715599