Measurement of Space Charge Accumulation in Dielectric Materials and Analysis using Quantum Chemical Calculation Tatsuo TAKADA takada@a03.itscom.net, Emeritus Professor Tokyo City University / IEEE Fellow # Part 1 Q(t) measurement #### Q(t) measurement results (Difficult for charge accumulation in aromatic polymer) #### Q(t) measurement results (Easy for charge accumulation in olefin polymer) ### Q(t) Measurement: Water-tree Deteriorated CV Cable Q(t) device is set on high voltage side Vdc High Voltage $Q(t) = \int I(t) dt$ Q(t) Meter EM wave Q(t) ### Q(t) Measurement: Gamma-ray irradiated cable Generation of electron/hole pair by gamma-ray irradiation in cable → the electron/hole pair are recombined by the thermal energy and an applied electric field. ### Charge Measurement Methods of DC insulating materials ### < Q(t) Measurement > #### < PEA Method > ### Q(t) and PEA give same properties results PS (polyethylene): little charge accumulation. ### LDPE (low density polyethylene): large amounts of charge accumulation. # Comparison among various methods of DC insulating material properties Q(t) method: wide range of tested temperature and electric stress Q(t) method PEA methode I(t) measurement Q(t) method*ei* Measurement Principle Pico-ammeter-Electro-acoustic Current integration₽ transducer₂ Space charge distribution (0)₽ Χø Χø Evaluation of . (0)₽ ×ω O₽. charge accumulation Conductivity κ [S/m]₽ (0) ₽ (0)₽ ×ω Dielectric constant **⊚**₽ Χø Χø Table Comparison between measurements for electric charge properties ### Part 2 **PEA measurement** # A: Research Subjects on HVDC Electrical Insulation - Internal electric field distortion caused by charge accumulation leads to an electrical breakdown of insulating materials - Electric charge accumulation is one of significant factor for studying the properties of insulating materials ### B: Measurements of Space Charge Accumulation / PEA & PWP PEA measurement result of space charge accumulation in Kapton film under a different electric filed and an elevated temperature. ### B-1 PEA space charge distribution measurement for sheet sample High temperature P E A system P E A: Pulsed Electro-Acoustic method PWP: Pressure Wave Propagation method Ying Li and T. takada, "Progress in Space Charge Measurement of Solid Insulating Materials in Japan, "IEEE Electrical Insulating Magazine, Vol.10, No.6, pp.16-28, September/October (1994) ## B-2 PEA measurement for Observing Charge Accumulation in Cross Section (r, θ) in Cable Geometry Measurement result of accumulated charge #### <Q(t) Measurement> Measurement of basic electric properties - •Charge accumulation $\Delta Q(t)/Q_0$ - •Conductivity *κ* [S/m] - •Dielectric constant ε_r $Q(t)=Q_0+\Delta Q(t)$ measurement and Evaluation of $\Delta Q(t)/Q_0$ - Electric field dependence - Temperature - Time dependence - <High temperature •</p> space charge measurements > - PEA measurement technology - Charge density distribution measurement ρ (x,t,T) [C/m³] <Quantum Chemical Calculation>Calculation of fundamental function for dielectric materials - Energy gap $\phi_{\rm g}$ - Electrode charge injection barrier $\phi_{\, \mathsf{B}}$ - Charge trap depth $\phi_{\rm t}$ #### **Consultant Contents** - Measurement technology of space charge accumulation in dielectric materials - Evaluation and analysis of HVDC insulating materials in new energy power system. - Evaluation and its analysis for high field DC insulating materials in a power electronic device. ### <Mechanism of charge accumulation in dielectric materials > - Dominant: electrode charge injection - Dominant: electrode charge transfer - Dominant: electrode charge generation #### <Mechanism of insulation deterioration> - Observation of energy level variation caused by charge accumulation - Breaking the molecular chain by the accelerated electron under high electric field # C: Fundamental Electronic Parameters of Insulating Materials by using Quantum Chemical Calculation #### Energy level distribution and related parameters 3-demensional electro-static potential distribution ### D: Analysis of Electric Charge Accumulation in Dielectrics - Electron energy level distribution is calculated by Quantum Chemical Calculation. → - Electron and hole trapping sites are introduced on the main chain which are determined by chemical molecular structure. → - · 3-dimensional electro-static potential distribution for positively and negatively charged chains was calculated by Quantum Chemical Calculation. → - It is clearly found that the potential distortion is located at the estimated trapping sites on the chemical molecular structure. Quantum Chemical Calculation is very useful to analyze the charge accumulation properties of insulating materials. ### D: Analysis of Electric Charge Accumulation in Dielectrics - Positive charge injection from anode into polyethylene under high electric filed stress is observed by PEA method. → - Why does the positive charge inject significantly in PE? → - The barrier high (ϕ_B) of hole carrier is evaluated by using Quantum Chemical Calculation. \rightarrow - It is found that the hole carrier injection barrier from semi-conducting electrode is low, leading to the positive charge accumulation. #### Key subjects: - PEA measurement - Quantum Chemical Calculation # Series of "Space Charge Accumulation in Dielectrics and Quantum Chemical Calculation Analysis" ### Key issues for dielectrics investigation: - (1) Classical theory of electro-magnetic and dielectric physics - (2) Measurement technology and signal processing - (3) Quantum chemical calculation.