Comparison of On-road & Laboratory-based Rolling Resistance Measurements

Dr. Jürgen Bredenbeck
Dr. Rahul Ahlawat, Dr. Michael Smith, Mr. Tatsuo Ichige Mr. Katsuhiko Furuya

Tire Meets Science
11-12 September 2013, Aachen, Germany
• Objective
• On-Road Measurement
• On-Road Results
• In Door Testing
• In Door Results and Comparison
• Summary
Objectives

1. Comparison of on-road rolling resistance measurements with standardized indoor testing

2. Comparison of standardized testing on flat-belt and drum machines
• Objective
• On-Road Measurement
• On-Road Results
• In Door Testing
• In Door Results and Comparison
• Summary
On-Road Rolling Resistance Measurements

Coast-down method
e.g. VTI, Sweden [9, 12]

Instrumented trailer
e.g. FKFS, Germany,
BASt, Germany,
HUT, Finland [6]

Instrumented vehicle
e.g. A&D, Japan
Test Vehicle:
• Instrumented Mini Cooper S
• Proving ground in Tochigi, Japan

Test Tires:
• Rear left (RL) & rear right (RR)
• Bridgestone Sneaker2 (205/55 R16 91V)
• 250 kPa (capped)

Test Procedure:
• Round course 6 repeats at different speeds
• Selection of straight, constant speed phase for data analysis
A&D Wheel force Sensor (WFS)

- Unique design
- Distributed force bridges with model based decomposition to get orthogonal force components
- Low cross sensitivity
- Low temperature sensitivity
- High sampling rate
- High Accuracy
 0.1% resolution
 (6N or 1.8Nm)
• Doppler Velocity Sensor
 – Vehicle velocity

• GPS Sensor & In-vehicle Network
 – vehicle longitude, latitude, altitude, and ECU CAN communication

• A&D Wheel Position Sensor
 – 6 degrees of freedom of the tire relative to chassis

• Inertial Sensor
 – vehicle roll, pitch and yaw

• Digital Signal Processing & Acquisition
 – 100Hz sampling of all signals
Rolling resistance is created in the Tire patch. Tire Patch shows an asymmetric Pressure distribution, which can be substituted by:
- a total contact force F and
- a moment M_R

M_R appears as resistance force R on the wheel hub.
\[M_R = R \cdot r \]
r: dynamic rolling radius
Mathematical Formulation

\[M_R = R \cdot r \] \hspace{1cm} \text{[1]}

Torque equation: \[J \cdot \dot{\omega} = -My - MR + FA \cdot r \]
with [1]: \[J \cdot \dot{\omega} = -My - R \cdot r + FA \cdot r \] \hspace{1cm} \text{[2]}

Force equation: \[m \cdot a = F_x - FA \]
\[\Rightarrow FA = F_x - m \cdot a \] \hspace{1cm} \text{[3]}

Kinematic condition: \[v = \omega \cdot r \]
\[\Rightarrow r = v / \omega \] \hspace{1cm} \text{[4]}

[3] in [2]: \[J \cdot \dot{\omega} = -My - R \cdot r + \left(F_x - m \cdot a \right) \cdot r \]
\[\Rightarrow R = F_x - m \cdot a - \left(\frac{1}{r} \right) \cdot (J \cdot \dot{\omega} + My) \]

with [4]: \[R = F_x - m \cdot a - \left(\frac{\omega}{v} \right) \cdot (J \cdot \dot{\omega} + My) \]

\[\phi, \omega, \dot{\omega} \]
\[x, v, a \]
\[r \]
\[\text{Rolling radius} \]
\[\text{Angle, angular speed/acceleration of wheel} \]
\[\text{Distance, speed,acceleration of wheel} \]
\[\text{torque inertia/mass of wheel} \]
\[J, m \]
\[\text{Torque/force on wheel hub} \]
\[My, F_x \]
\[\text{Adhesive force} \]

Determined before the Experiment
Parameter Determination

- Tire mass can be determined by lifting the wheel. WFS will show the mass.
- Tire rolling inertia is determined using free load rotating wheel in acceleration and deceleration condition.
- Measurement items:
 - Tire angular speed ω [rad/s]
 - Angular acceleration $\dot{\omega}$ [rad/s2]
 - Wheel torque $M_{y\text{free}}$ [Nm]
- Rolling inertia formula:
 $$J_t = \frac{M_{y\text{free}}}{\dot{\omega}}$$
Data selection

- Data is filtered at 5Hz
- Various signals are analyzed to find a time period having constant speed, straight line vehicle motion
Content

• Objective
• On-Road Measurement
• On-Road Results
• In Door Testing
• In Door Results and Comparison
• Summary
- Three speeds
- 6 tests for each speed
- Calculation applied to time data of Fx and My according to introduced formula
Mean Rolling Resistance Forces (RRF)

- Averaging the time record data for individual speeds
- Rolling resistance force does not vary significantly with speed
- It is possible to have good repeatability for on-road measurements

![Graph showing mean RRF values and standard deviations](image)

Mean RRF = 85.4 N
\(\sigma_{RRF} = 1.8 \) N
\(\sigma_{RRC} = 0.65 \) N/kN

Mean RRF = 84.9 N
\(\sigma_{RRF} = 2.3 \) N
\(\sigma_{RRC} = 0.84 \) N/kN

Mean RRF = 84.6 N
\(\sigma_{RRF} = 1.9 \) N
\(\sigma_{RRC} = 0.70 \) N/kN
Content

- Objective
- On-Road Measurement
- On-Road Results
- In Door Testing
- In Door Results and Comparison
- Summary
Indoor Testing Equipment

- A&D Standard Rolling resistance test rig
 - 2m Drum, Steel covered

- A&D Dynamic Flat Belt Test Rig
 - Steel Belt

- Force Measurement utilizing A&D Hub Sensor
 - MBS Sensor approach
 - Fx: 300N ±0.3N
 - Fz: 15kN ±20N
 - Machines Meet Reference Lab repeatability criteria
Test Procedure for Indoor Testing

Follow ISO28580 Test Procedure

- 3h thermal conditioning
- 30 min warm up
- Test conditions: Speed 80 km/h, 210kPa (capped), 80% max Load
- Skim Test at 150N

Measurements:

- Spindel Force
- Loaded Tire radius

Calculation of:

- Surface Force
- Parasitic Force
- Rolling resistance Force
- Temperature correction
- Rolling resistance Coefficient
- Curvature correction [3], [5]
Content

• Objective
• On-Road Measurement
• On-Road Results
• In Door Testing
• In Door Results and Comparison
• Summary
Comparison of Results

Comparison of On-road and Indoor Measurements

On-Road \((F_z=2.73\,\text{kN}) \)

Indoor \((F_z=4.82\,\text{kN}) \)

Drum Machine

Clark’s Curvature Correction

Flat-belt Machine
Potential Reasons for Differences

- Tire alignment (camber, toe) on the road [4]
- Roughness of road surface (unevenness, macrotexture) [7, 10-12]
 - Energy dissipation in the suspension
 - Dynamic vertical deflection of the tire leading to additional hysteresis
 - Additional friction losses due to microslip
- Uncontrolled environmental factors such as temperature and inflation pressure
- Measurement errors such as loaded tire radius
Indoor Testing Results

Comparison of ISO28580 Rolling Resistance Test Results

Rolling Resistance Force (N)

Drum Machine | Curv. Correction | Flat-belt Machine

Bridgestone Sneaker2 205/55 R16 91V
• Excellent repeatability is achieved for both drum & flat-belt machines
• Tire ranking is preserved during iterative testing
• Drum and Flat-Belt machines rank tires differently
• Flat-Belt results are lower than drum and curvature corrected [3, 5] drum machine results
Temperature Differences

Drum acts as a heat sink whereas belt gets heated up

Temperature Comparison for ISO28580 Rolling Resistance Tests

Flat-belt machine

Drum machine
- Relative ranking is not preserved for both RRF and RRC
- Ranking based on RRC and RRF will be different as they represent different things
Summary

• Repeatable on-road measurements are possible
• Indoor measurements offer superior control of test parameters and very high repeatability
• Measured losses are significantly less than what we see on the real road
• In door testing should include more test variables (such as camber, toe, slip, etc.) to get a closer approximation of in-vehicle & on-road tire performance
• Relative tire rankings from drum and flat-belt measurements are not necessarily equivalent
Acknowledgements

- On-road data acquisition:
 - Takayasu Sasaki
 - Yuuki Sakurai
 - Masaaki Banno
 - Hiroki Yamaguchi
- Indoor data acquisition:
 - Atsuo Murakami
 - Tomikazu Oyama
 - Masaki Takahashi
- Kenji Sato, A&D Company, Japan
- Dr. Rahul Ahlawat
8. Petrushov, “Coast down method in time and distance variables for tire rolling resistance determination”, SAE 2009-01-0072
13. Salaani et al., “NHTSA tire rolling resistance test development project – Phase I”, Paper Number 09-0300