

Model Based Engine Calibration

Using State of the Art Software Support

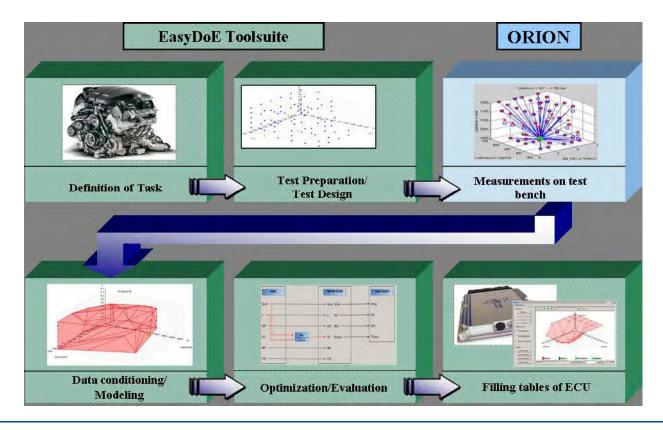
2010 Motorcycle & Engine Key Technology Seminar Tanjin University June 2.-3.

Tony Gullitti, IAV Automotive Engineering, Inc Don Nutter, A&D Technology, Inc Dr. Jürgen Bredenbeck, A&D Europe GmbH

Introduction

- Model based calibration
 - Use of models of the engine behavior for main calibration
 - Models are created using Design of Experiments (DoE) Methods
- DoE in engine development is more then just experiment design
 - It is a synonym for a structured methodology of calibration
- Split nature of the process
 - Statistical knowledge for analysis
 - Test cell automation for data gathering
- Typical end user understands engines / calibration
 - But is not a statistics expert
 - Does not specialize in test bed control systems

Objective



- Objective
 - Demonstrate how to use the software tools to execute a typical calibration task
 - Ease of use
- Calibration Goal
 - Optimize part of the speed/relative load map of a gasoline engine
- Definition of Factors
 - Define optimal settings for available parameters
 - Variable Valve Timing
 - Spark Advance
 - Lambda
- Optimization Objectives
 - Minimize brake specific fuel consumption (BSFC)
 - Minimize the BSFC and emissions
 - Maximize the torque

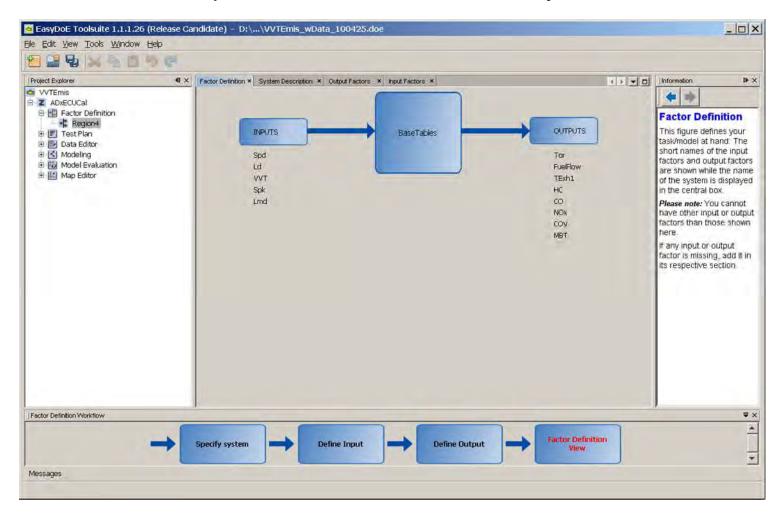
State of the Art Software Tools

- The use of state of the art software tools facilitates the process for the end user and organization
 - EasyDoE ToolSuite provides statistical methods
 - ORION provides procedures for automated testing

Definition of Factors and Responses

- The factors required are
 - Engine Speed
 - Relative Load
 - Variable Valve Timing
 - Spark Advance
 - Lambda

- The responses required are
 - Torque
 - Mass Fuel Flow
 - Exhaust Temperature
 - Maximum Brake Torque (MBT)
 Spark
 - Emissions HC/CO/NOx
 - Coefficient of Variation of Indicated Mean Effective Pressure (COV of IMEP)
 - BSFC (calculated)


- Optimization Constraints
 - Spark advance less than or equal to MBT Spark
- Monitor during data gathering
 - Knock Amplitude
 - Water, Oil Temperatures, etc.

R = f(Spd, Ld, VVT, Spk, Lmd)MBT = f(Spd, Ld, VVT, Lmd)

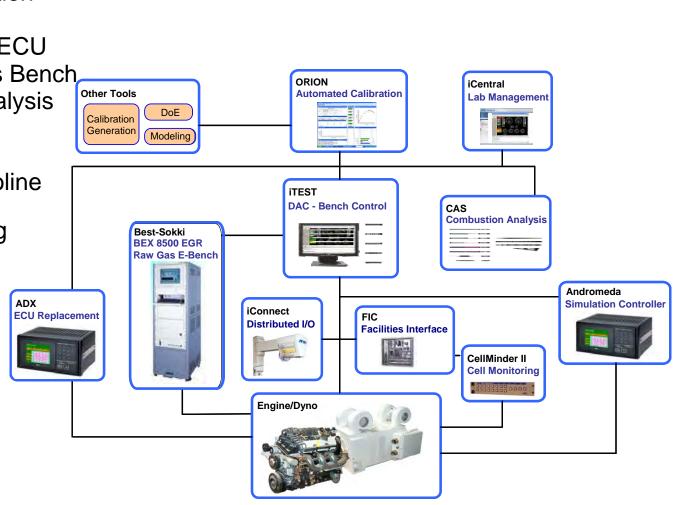
• Factors and responses are entered into EasyDoE Toolsuite

EasyDoE Test Plan

• The experiment design is entered, and 145 points are generated

ALC BRITERS	E X Calculated Testplan X St	ecitication of Influence	es ¥ Cho	ise Test Desig	in * Con	trainte ×					4 4 - 0	Information
VVTEmis Z ADxECUCal	General operations	No. Type	Expor	Repeat		Spd	Ld	VVT .	Spk	Lmd		
ADXECUCAL ADXECUCAL		134 D-Optin	ptimal 🗹 🗀 (Fit 🔄 5000.0 50.0 39.0 3.0 0.84)	-	-							
😑 🗾 Test Plan	Filter	135 V-Optimal 136 V-Optimal			Fit -		100.0	33.0	-1.0	0.92		Test plan
🖻 🛃 Regional	Export	130 V-Opur 137 D-Optir			Fit =	4600,0	90.0 85.0	0.0	-11.0	0.9		view
F TestPlan 1		137 D-Optin 138 D-Optin		LI LI	Fit =	5000.0	100.0	0.0	3.0	1.0		The test plan
🗄 🛃 Data Editor 🕀 🚯 Modeling	Evaluate	139 D-Optin			Fit -	5000.0	75.0	0.0	3.0	0.9		view is the main view of
Model Evaluation	Delete row	140 V-Optin		0	Fit -	4200.0	55.0	21.0	-7.0	1.0		created test
E III Map Editor		141 Space-Fill		10	Fit -	3400.0	60.0	27.0	-13.0	0.82		plan allowing
	Create repeat	142 V-Optin	-	D	Fit .	4600.0	55.0	21.0	-17.0	0.84		the user to
		143 D-Optin	al 🕑	U	Fit -	3400.0	75.0	6,0	-1.0	1.0		preparing the export to the
		144 V-Optin	al 💌		Fit 💌	4600.0	50.0	21.0	3.0	0.96		test bench
		145 V-Optin	al 🖉	0	Fit -	4200.0	60.0	3.0	-21.0	0.96	*	system. All
		4									2	points of the test designs
	Type: 30 x: Spd Y: Q: Q: 20 20 20 20 20 20 20 20	Ld 💌 Z: Spi	•		я					how points which are	not exported in plot (gray)	a plot. Repeated
	X: Spd Y Y:	P4	Sph. [*C.4]	4600 4600 50	900 000	an a	05 100	_			not exported in plot (gray)	as graphical i a piot. Repeated measureme It is common practice to repeat certai measuremen regularly during your measuremen campaign. By comparing th measuremen results you
stplan Workflow	X: Spd Y Y:	P4	Sph. [*C.4]		00	age and a second	validation: X	Spd, Y. Ld, 2:			not exported in plot (gray)	as graphical i a piot. Repeated measureme It is common practice to repeat certai measuremen regulariy during your measuremen campaign. By comparing th measuremen

A&D Technology's R&D Test Cell



Test Cell Features:

- ORION Test Automation
- iTest Bench control
- ADX rapid prototype ECU
- Best Sokki Emissions Bench
- CAS Combustion Analysis

Engine Features:

- Production 4-cyl gasoline
 engine
- Variable Valve Timing

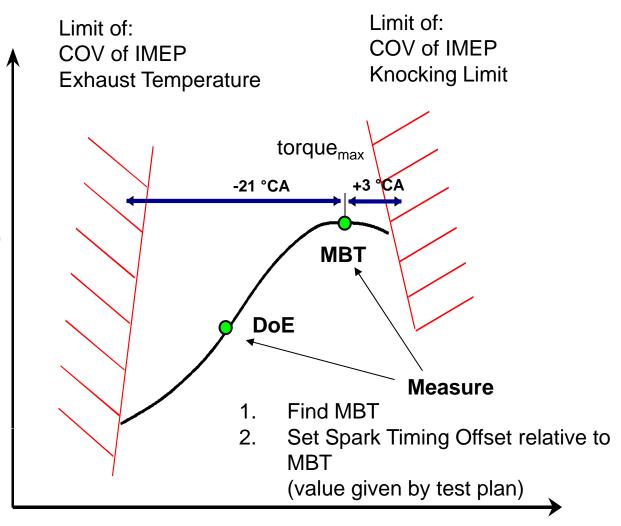
ORION Configuration

- ORION MDA is the key interface for the user creating the configuration
- Main configuration task is Compiling the following elements:
 - Parameters both from the test cell and Calibration tool
 - Sequence action to be executed in, flow-chart based
 - Test Plan all values from the DoE that the sequence needs to execute imported from Easy DoE

	Celetine / Sequence				_ib
	Actors Permiters Chamile				
Utpr Utpr Sopa F4 B b B S	ionfiguration — SparkSweep e Edit Fester Edit Test Point Library e 🛃 🗶 🍋 🛄 🌮 Ant Finn				
81		A Parameter hame	Sptei	ThrottlePosition	WT
(0 Fair	- Setaterice	Parameter Type	Operating Point	Operating Point	SetParameter
. = 0	Parameter	Adjustment Type	Set: Value	Set Vakie	Set: Value
	Coperating Point			1	
3.5	1-1 ThrottiePosition	4			
	Set	3			
	SparkOffset	4			
		5			
. 3.	SVT				
	PGR-rate	1			
	Heasare	8	-		1
+	Keackintensity	9	1		
2.6	EshTesp	10			
e Teil #-Sob		11			
E Har	HC HC	12			
	CASO	12	-		-
	FusiTemp	14			-
	🖨 📩 Calculate	15			
	E- D Speed	16	1		
	ThrottlePosition				
	E Cart	18	2 1	-	
	L- CR RGR-vate	(9)	N (1 1 1		· · · · · · ·
	AFR AFR	20			

ORION Test Execution

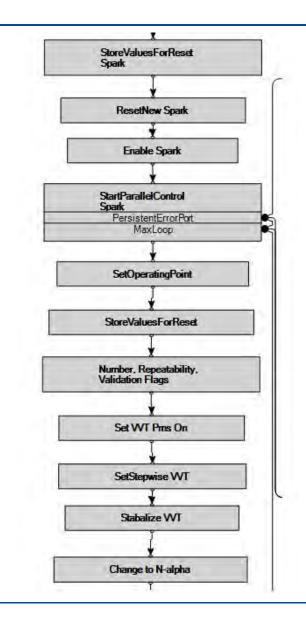
- MA is the key interface for the operator in the test cell
 - Simple load the configuration file from MDA
 - Connect to test cell control and calibration tool
 - Execute sequence by pressing "start"
- Indicators and graphs keep the operator informed on progress and status
- Test cell system collects the data as directed by MA via ORION "Measure" action
- MA remembers state of test point – measured successfully
 - Easy to restart a test



Data Gathering Strategy

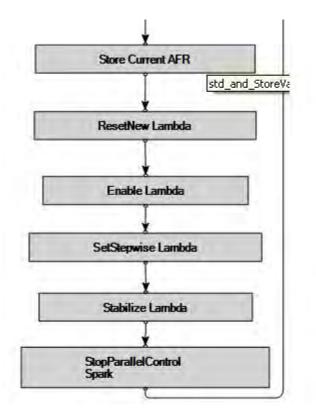
Torque

- Save existing cal values
- Set speed and load
- Set VVT
- Set Lambda
- Sweep spark for MBT
 - Measure
- Set offset spark value relative to MBT Spark
 - Measure
- Reset cal values



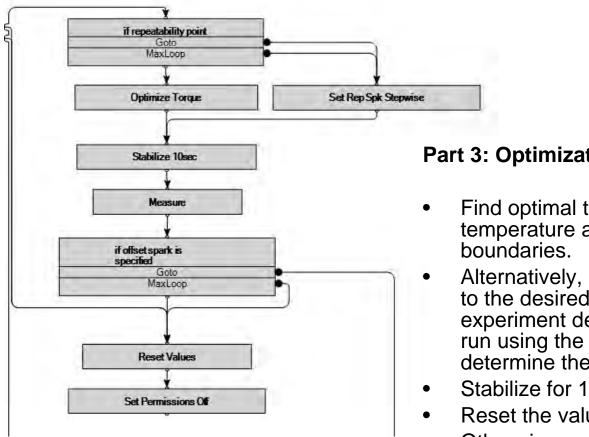
Ignition Angle

- Test cell run in speed / load mode
- Parallel control on spark advance during setting of speed / load and stepwise setting of VVT and Lambda
 - CA50
 - Monitored limits of temperature and knock
- Two data points taken for each Speed/Load/VVT/Lambda
 - On-line determination of MBT Spark using ORION optimization
 - Offset spark added to MBT
- Repeatability points are added
 - Center point of factor ranges
 - Used to check verify model quality



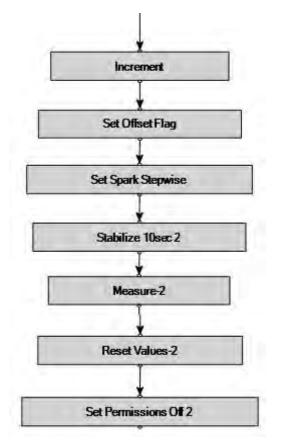
Part 1: Parallel Control of Spark CA50, Set stepwise VVT

- Store the initial values for the spark advance for reset at the end of the step.
- Start the parallel control for spark advance.
- Set the speed/load setpoint from the experiment design.
- Store the VVT value for reset.
- Store flags from the experiment design.
- Turn on VVT permission and set the VVT stepwise.
- Stabilize the temperature
- Change the dyno mode to speed / alpha to lock the air path.



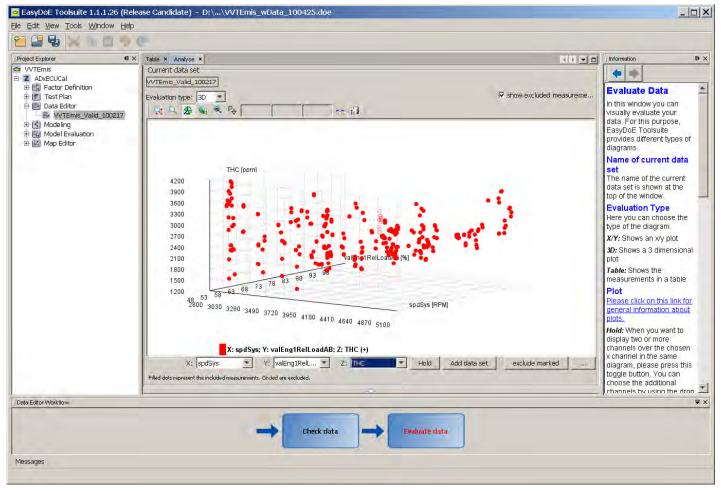
Part 2: Set Stepwise Lambda

- Store the initial values for the Lambda for reset at the end of the step.
- Set the Lambda permission and set Lambda stepwise.
- Stop the parallel control for spark advance.



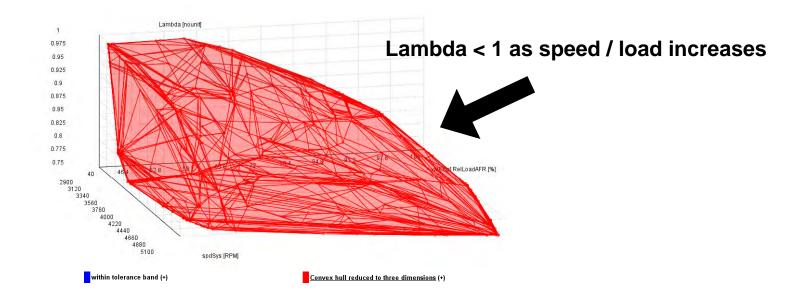
Part 3: Optimization

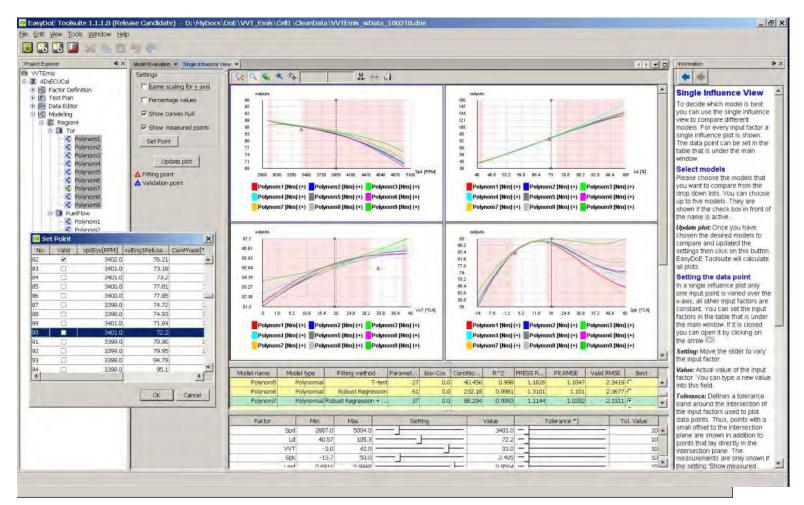
- Find optimal torque by sweeping spark. Exhaust temperature and knock are monitored to define
- Alternatively, if this is a repeatability point, then set to the desired spark in the test plan. After every 10 experiment design points a repeatability point is run using the center point for each region to determine the variation of the response values.
- Stabilize for 10 seconds and then measure.
- Reset the values if this is a repeatability point.
- Otherwise continue to measure offset spark.


Part 4: Measure Offset Spark, Reset Starting Values

- Increment the spark advance by the offset spark value from the experiment design.
- Stabilize and measure.
- Reset the initial values and proceed to the next step.

Data Review

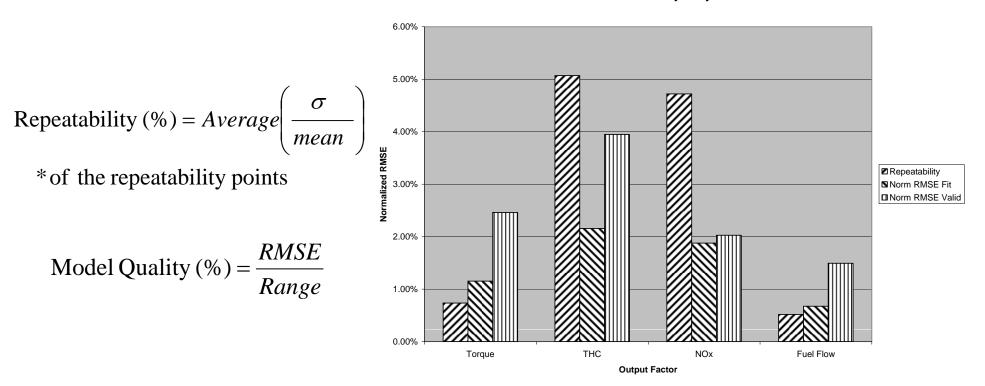

 The data is imported into EasyDoE Toolsuite and reviewed via a user interface


- Temperature limits during data gathering set to 750°C
 - This was conservative; difficultly reaching lambda = 1
- Aftermarket Lambda sensor used for AFR feedback control
 - AFR calculated from bench was more reliable
 - Resulted in variation in the repeatability measurements for emissions

Modeling

- The data is associated with the factor definition and modeled
- A best model is selected for each response and stored as a result model

EasyDoE Fitting Methods


- Model fitting is done automatically in EasyDoE Toolsuite
- The following polynomial fitting methods are run for each model

Pol	lynomial Fitting Method	Description
1.	Standard Regression	Least Squares Estimation
2.	Minimize PRESS	The PRESS value is used to select the model terms.
3.	Stepwise Fit	Stepwise regression for term selection
4.	OLS	Orthogonal Least Squares Estimation
5.	T-test	Tests each coefficient to be zero with a specific probability (model structure). If the coefficient is likely to be zero it is taken out.
6.	Robust Regression	Detects the bad data points and build models without these points.
7.	Robust Regression + Minimize PRESS	Model is built without bad data points and trained with the 'best' terms selected by 'Minimize PRESS' algorithm.
8.	Robust Regression + Stepwise Fit	Model is built without bad data points and trained with the 'best' terms selected by 'Stepwise Fit' algorithm.
9.	Stagewise Regression	Incremental Forward Stagewise Algorithm i.e. incremental coefficient adaptation in direction of highest correlation to the current residuals.

Model Quality Analysis

Model Quality Analysis

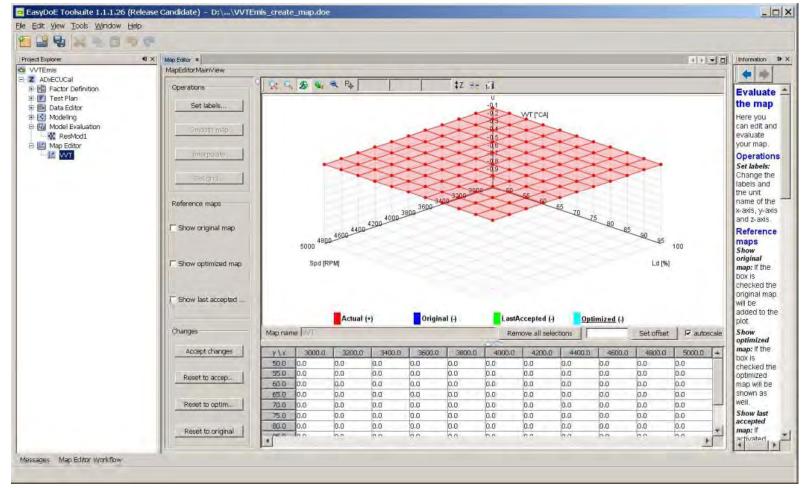
Repeatability < Model Quality_{Fit} < Model Quality_{Valid & Ver} < 5%`

- Repeatability and Model Quality should correlate
- The variability of the AFR sensor resulted in higher repeatability values for emissions

Optimization Requirements

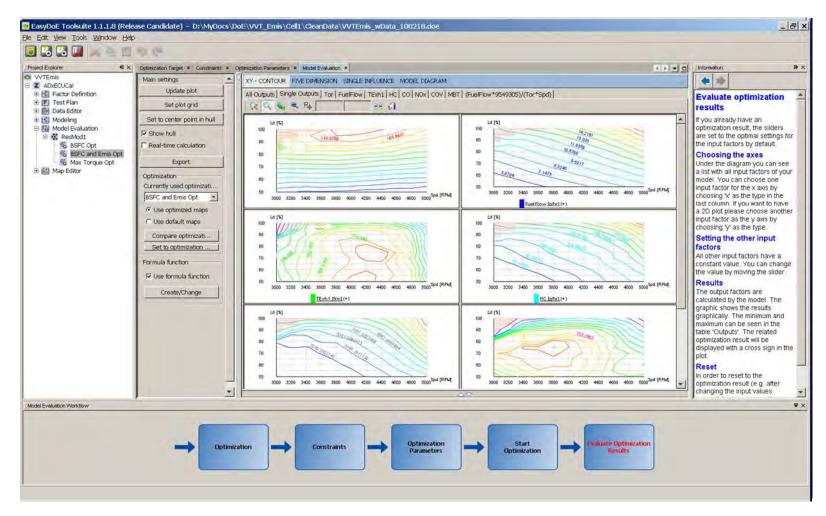
- In Model Evaluation a grid of speed / load points is defined:
 - Speed
 3000 to 5000 in 200 RPM increments
 - Relative Load
 50 to 100% in 10% increments
- A weighted sum gradient descent method is selected.

- +1	Maximize the response
1	Minimize the response
- 0	No optimization on the response


- Three optimizations:
 - Minimize BSFC: BSF
 - Minimize BSFC :
 - Min HC/CO/NOx
 - Maximum torque:

- BSFC weight is set to -1 BSFC weight is set to -0.5. HC/CO/NOx weights set to -0.05/-0.05/-0.4 Torque weight is set to +1
- A constraint is set to restrict the factor of
 - Spark advance < MBT spark

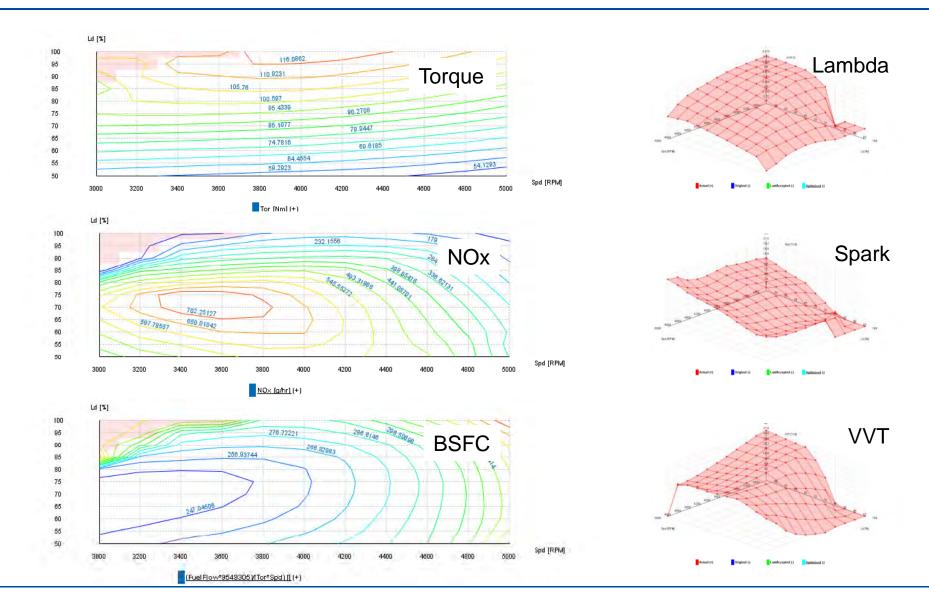
Model Evaluation – Map Creation



- Maps for each optimization are created in the map editor
 - VVT, Spark, Lambda

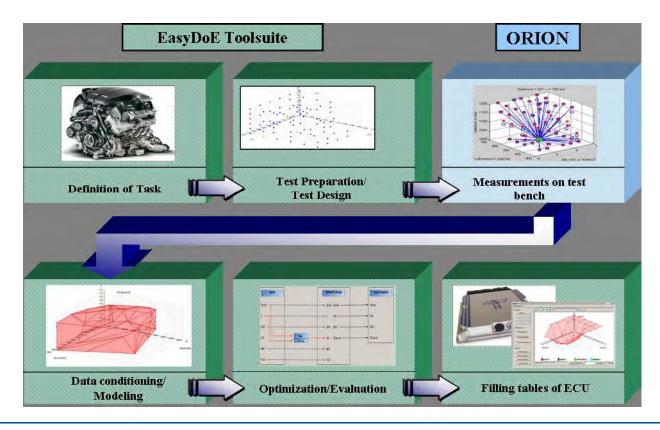
• The optimization is performed in Model Evaluation

Model Evaluation – Map Editor



• After the optimization the maps can be edited graphically or in the table

Model Evaluation Objective BSFC



- EasyDoE Toolsuite and ORION provide effective methods for implementing DoE methods
 - Their GUIs make DoE easy to use
 - The results match the physical expectations

Tony Gullitti

IAV Automotive Engineering, Inc 15620 Technology Drive Northville, MI 48168 Phone: +1(734) 233-3352 anthony.gullitti@iav-usa.com

Don Nutter

Thank you

A&D Technology, Inc 4622 Runway Blvd Ann Arbor, MI 48108 Phone: +1(734) 822-9564 dnutter@aanddtech.com

Dr. Jürgen Bredenbeck

A&D Europe GmbH Im leuschnerpark 4 64347 Griesheim Germany Phone: +49(6155) 60 52 50 bredenbeck@aanddeurope.com