Rolling resistance measurement on the road: A dream?

Dr. Jürgen Bredenbeck

Tire Technology Expo,
14.-16. February 2012 Cologne
• Motivation
• Introduction of the used Measurement Equipment
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Motivation

• The demand to higher efficiency concerns each component of future vehicles
• Tire resistance is identified as one of the areas for efficiency improvements independent of vehicle drive concepts
• Understanding the behavior in real road conditions will become more important
• Standard testing methods (drum based) do not deliver road condition related information
• Real road conditions measurement was suffering from:
 – Accurate measurement equipment for the forces as Tire resistance value is relative low
 – Low repeatability
 – Ability to separate different influence sources
• Motivation
• **Introduction of the used Measurement Equipment**
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Measurement Equipment on Road

- Vehicle measurement System (VMS)
 - Wheel Force Sensor (WFS)
 - Wheel Position Sensor (WPS)
 - Other sensors such as GPS
 - Vehicle ECU Information
• Flat belt tire testing rig (steel belt)
 – Best simulation of the road
• Test is performed with the same sensor used for the vehicle testing

<table>
<thead>
<tr>
<th>Rig Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>0~200km/h</td>
</tr>
<tr>
<td>Slip Angle</td>
<td>±20deg (0~3Hz)</td>
</tr>
<tr>
<td>Camber Angle</td>
<td>±15deg (0~1Hz)</td>
</tr>
<tr>
<td>Up & Down</td>
<td>050mm (025Hz)</td>
</tr>
<tr>
<td>Load</td>
<td>Fx: ±10 kN</td>
</tr>
<tr>
<td></td>
<td>Fy: ±10 kN</td>
</tr>
<tr>
<td></td>
<td>Fz: 12 kN</td>
</tr>
<tr>
<td>Flatness of the steel</td>
<td>Less than 10 μm</td>
</tr>
<tr>
<td>belt (under load condition)</td>
<td></td>
</tr>
<tr>
<td>Bearing under the belt</td>
<td>Air bearing</td>
</tr>
</tbody>
</table>
Wheel Force Sensor (WFS)

6 component in wheel force sensor main properties
- 3 axis of force and 3 axis of moment
- Total error 0.1%
- Capacity:
 - Fx = 24KN, Fy = 15KN, Fz = 24KN
 - Mx = 4.5 KNm, My = 4 KNm, Mz = 4.5 KNm
- Resolution 1/4000
 - 6N or 1.8Nm
- Data acquisition up to 1kHz
- Lightweight 3.2 Kg
Unique Force Detection Method

- Model Based Sensor concept
 - Shared force detection method
 - Eight bridges are applied to the spring element
 - No direct detection of each component
 - Components are re-composed by model based calculation using real time calculation DSP platform
 - Digital conversion of all signals and electronically re-composing overcomes disadvantages of analogue approach
 - Cross talk error can be canceled out
Minimized Temperature effects

- Vehicle measurement is a challenge for the temperature influence
 - Temperature gradient e.g. break side outside
 - Quick change of temperature depending on driving maneuver
- Need for robust design against Temperature effects
 - Share Force method allows to place the strain gauges very close to each other
 - Total gradient on each gauge is very small
 - Small temperature effect on the measurement
 - At the same time robustness against dynamic temperature changes
Mechanical and Electrical sensitivity

- Application needs stiff sensor and high accuracy
- Sensor sensitivity:
 - Mechanical sensitivity x electrical sensitivity
- Stiff Spring element design results in:
 - Increase of robustness
 - Increase of eigenfrequency
 - Reduction of mechanical sensitivity
- Increase electrical sensitivity by utilizing:
 - High precision A/D converting of nV order
 - Low noise design from less analog circuit
 - Optimized temperature compensation from gauge layout
- The combination of all technology results in a high accurate sensor with 1/4000 resolution
• Motivation
• Introduction of the used Measurement Equipment
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Tire Loss Theory

- Tire loss can be calculated from measured parameters on the wheel

Measurement parameters
- Tire rolling inertia \(J_t \) in kg\(\cdot \)m\(^2\)
- Tire effective radius \(r_t \) in m
- Wheel torque \(M_y \) in Nm
- Tire longitudinal force \(F_x \) in N
- Tire Angular speed \(\omega \) in rad/s
- Tire Angular acceleration \(\dot{\omega} \) rad/s\(^2\)

Calculated parameter
- Tire loss (rolling resistance) \(R_x \) in N

\[
R_x = \frac{M_y + J_t \cdot \dot{\omega}}{r_t} - F_x
\]
• Motivation
• Introduction of the used Measurement Equipment
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Testing procedure on the test track

- Target: Determine “Tire Loss” from real driving condition
- Test car: BMW Mini Cooper S
- Test Track:
 - Total length: 1,792m
 - East straight line: 550m
 - West straight line: 554m
- Driving Maneuver:
 - Acceleration at west straight line
 - Cost down at East straight line
 - Test laps: 10 laps
- 100Hz data acquisition
• Motivation
• Introduction of the used Measurement Equipment
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Test Track Measurement Results

- Example plot of one round
- F_x shows mainly difference between front and rear wheel
- F_z shows change between left and right
Parameter Determination

Direct Measures from the sensor:
- Wheel torque M_y in Nm
- Tire longitudinal force F_x in N

Indirect Measures:
- Tire rolling inertia J_t in kg\cdotm2
- Tire effective radius r_t in m
- Tire Angular acceleration $\dot{\omega}$ rad/s2

$$R_x = \frac{M_y + J_t \cdot \dot{\omega}}{r_t} - F_x$$
Wheel inertia

- Tire rolling inertia is premeasured using free load rotating wheel in acceleration and deceleration condition

- Measurement items
 - Tire angular speed ω [rad/s]
 - Angular acceleration $\dot{\omega}$ [rad/s2]
 - Wheel torque My_{free} [Nm]

- Rolling inertia formula:
 $$J_t = \frac{My_{\text{free}}}{\dot{\omega}}$$
Angular acceleration determination

- Tire angular speed is measured from sensor angle encoder.
- Tire angular acceleration is calculated from angular speed signal by time derivative.
- Measurement item:
 - Tire angular speed ω [rad/s]
 - Tire angular acceleration $\dot{\omega} = \frac{d\omega}{dt}$
Tire radius determination

- Tire mean radius is calculated from vehicle velocity and tire angular speed.
- Vehicle velocity is measured from optical Doppler sensor
- Instant tire mean radius is measured.
- Measurement items
 - Vehicle velocity against road V_{ph} [m/s]
 - Tire angular speed ω [rad/s]
- Tire radius formula
 (Not considering tire slip)
 $$R_t = \frac{V_{ph}}{\omega} \quad [m]$$
Measurement parameter: Wheel torque and longitudinal force

- Wheel torque M_y and longitudinal force F_x are measured from 6 components of the Wheel Force Sensor (WFS).
Rolling Resistance Results

• To avoid tire slip error, driven wheel data is evaluated

• 10 laps of data

• To avoid some high frequency noise a low pass filter (4 Hz) is applied to the measurement data

• Very good repeatability for 10 laps
Rear Left Wheel results

- Average Rx: Rx = -76.1N (Acceleration), Rx = -72.8N (Cost down)
- 10 laps data variation 3σ : 2.8N (Acceleration), 3.6N (Cost down)
- Rx for Acceleration and Rx for Cost down data are very close to each other: 3.3N
Rear Right Wheel results

- Average Rx: Rx = -87.6N (Acceleration). Rx = -82.6N (Cost down)
- 10 laps data variation 3σ: 2.5N (Acceleration), 6.6N (Cost down)
- Rx for Acceleration and Rx for Cost down data are very close to each other: 5.0N
Measurement result: Test rig

Test condition:
- Slip angle: 0 [deg]
- Camber angle: 0 [deg]
- Wheel driven by steel belt
- Vertical load Fz: 1kN, 2kN, 5kN
- Static velocity: 5km/h, 10km/h, 20km/h, 60km/h, 80km/h, 120km/h

- Rolling resistance is directly measured from Fx using same sensor as on the road

Results:
- Rolling resistance is proportional to the vertical load and is not a function of velocity
- Rolling resistance at 2.7kN is 42N
Comparison: Real road vs Test rig

Real road rolling resistance:
• Rx(Left) = 74 N
• Rx(Right) = 82 N

Test rig:
• Rx = 42 N

Reasons for the difference:
• Tire alignment on Road and rig is different
• Road surface condition
• Environment conditions
 – Wind force to tire
 – Temperature
• Measurement errors
 – Tire effective radius measurement
• Motivation
• Introduction of the used Measurement Equipment
• Introduction of the theoretical approach
• Description of the Test procedure
• Results
• Summary / Conclusions
Summary and Conclusion

Summary:

• A&D Sensor delivers high quality data
 • Repeatability of 10 lab data did show good match
• It was possible to measure the tire loss (rolling resistance) during real driving condition
• Great match on the results though 10 laps of data
• Rolling resistance measurement result is depending on driving conditions
 • We did observer difference between acceleration and coast down conditions
• There are differences between road and test rig results

Conclusion:

• WFS is a useful tool for analyzing energy loss at real driving condition
• We are very close to the dream and will continue this investigation
Thank you for your attention!

You can find us on booth no. 8387 of the Expo