New Technological Guidelines Required for Pipette Management

(Proposal of a Pipette Management Method)

R&D Division 5 A&D Company, Limited 2010/9/2

First of All

Differences in dispensing volume of pipettes

Directly influence the test results

Compliance with standards such as GLP or GCP

 For creating a SOP (Standard Operating Procedure), checking pipette performance

Problems in the workplace

• Avoiding troubles due to pipette inaccuracy

• Maintaining and controlling pipette performance

Pipette Management Tools

Pipette Leak Tester-

Pipette Structure (Air-displacement Type)

What Is a "Leak?"

General Leak Detection Method

- Aspirate water and leave it. Check whether a ball of water appears at the tip end.
- Aspirate water and dip the tip end into the water container. Check whether the water level inside the tip lowers.

Visual check

• Some leaks may be missed depending on the degree of the leak.

Checking Pipettes Using the Leak Tester

- Actively reproduces the negative pressure that arises inside the pipette
- Detects leakage by monitoring pressure variation after the negative pressure is generated
- Prevents contamination (ingress of dust inside the pipette) by using the depressurization method

How the Leak Tester Operates

Benefits of Management With the Leak Tester

Easy (no water required), quick (approx. 6 sec.), and judgment using uniform criteria

Possible to detect pipette leaks efficiently as a daily task

Leak-test Results and Necessary Actions

Correlation Between Leak Amounts and Dispensed Volumes

Performance Check by Gravimetric Method

Measure the mass of the distilled water dispensed from the pipette and then convert it to a volume.

- ISO 8655(2002)
 - ISO 8655-2: Piston pipettes (specifications requirements)
 - ISO 8655-6: Gravimetric methods for the determination of measurement error

• JIS K0970(1989)

* Distilled water is a standard substance with known properties* ISO 8655 is commonly practiced.

Mass-to-volume Conversion (ISO 8655 Gravimetric Method)

The mass of the distilled water dispensed from the pipette is multiplied with a conversion factor called Z factor to obtain the volume.

 $V_i = m_i \times Z$

V_i : Volume(μL) m_i : Mass of the distilled water (mg) Z : Z factor (conversion factor, μL/mg)

"Z factor"

Factor to calculate a volume from a mass of distilled water, taking the temperature of the distilled water and the atmospheric pressure as parameters

- The following are taken into account:
- Density based on the water temperature
- Buoyancy of the distilled water (from atmospheric pressure and temperature)

Influences of Water Temperature and Atmospheric Pressure

- Influence of water temperature Approx. 0.1% per change of 5 °C between 15 °C and 30 °C
- Influence of atmospheric pressure Approx. 0.005% per change of 50 hPa between 850 hPa and 1050 hPa

Z factor matrix shown by ISO8655 (extract)

Temp	Atmospheric pressure						
°C	hPa						
	800	850	900	950	1000	1013	1050
15.0	1.0017	1.0018	1.0019	1.0019	1.0020	1.0020	1.0020
15.5	1.0018	1.0019	1.0019	1.0020	1.0020	1.0020	1.0021
16.0	1.0019	1.0020	1.0020	1.0021	1.0021	1.0021	1.0022
16.5	1.0020	1.0020	1.0021	1.0021	1.0022	1.0022	1.0022
17.0	1.0021	1.0021	1.0022	1.0022	1.0023	1.0023	1.0023
17.5	1.0022	1.0022	1.0023	1.0023	1.0024	1.0024	1.0024
18.0	1.0022	1.0023	1.0023	1.0024	1.0025	1.0025	1.0025
18.5	1.0023	1.0024	1.0024	1.0025	1.0025	1.0026	1.0026
19.0	1.0024	1.0025	1.0025	1.0026	1.0026	1.0027	1.0027
19.5	1.0025	1.0026	1.0026	1.0027	1.0027	1.0028	1.0028
20.0	1.0026	1.0027_	1.0027	1.0028	1.0028	1.0029	1.0029
20.5	1.0027	/1.0028_	1.0028	1.0029	1.0029	1.0030	1.0030
21.0	1.0028	1.0029	1.0029	1.0030	1.0031	1.0031	1.0031
21.5	1.0030	1.0030	1.0031	1.0031	1.0032	1.0032	1.0032

Influence of Atmospheric Pressure

Changes in atmospheric pressure in Tokyo (in 2008)

- Pressure changes at one location is normally with ±15 hPa.
- Even though the average (fixed value) is used, the pressure fluctuation can be locked in easily between ±30 hPa.
- Influence on the mass-to-volume conversion is within ±0.003%.
- →Influence of atmospheric pressure is negligible. => A representative value of the measurement location is acceptable.

Pipette Accuracy Tester

Includes the following:

- A balance that measures the mass of the distilled water dispensed from the pipette
- An evaporation trap that effectively prevents the evaporation of the dispensed water
- A thermometer that measures the temperature of the distilled water
- Software (WinCT-Pipette) that performs mass-to-volume conversion based on the mass output from the balance and the preliminarily input temperature of the distilled water and atmospheric pressure and then makes pass/fail judgments

Pipette

Nominal

Volume

μL

5 10

20

50

100

200

500

1000

2000

5000

10000

Models	AD-4212B-PT	AD-4212A-PT	FX-300i-PT
Weighing Capacity	110 g / 31 g /5.1 g	110 g	320 g
Minimum Weighing Value	0.1 mg / 0.01 mg / 0.001mg	0.1 mg	1 mg

Pipette specifications in accordance with ISO 8655

Evaporation of the Distilled Water Dispensed From the Pipette

Effectiveness of the Evaporation Trap

WinCT-Pipette (Software to Calculate Volumes)

- Possible to make pass/fail judgments according to the required level of
- accuracy
- Possible to save information on pipettes, balance used, and environmental conditions, and output the results

∰ WinCT-Pipette : Main				
File(E) Setting(C) Help(H)				
Select Measuring Point Measuring Point(1)	O Measuring Point(2)	O Measuring Point(3)	Pipette Information Manufacturer ABC	
A&D CompanyLimited Specifications	Specifications	Specifications	Model Model-200	
Pipette Volume 50 (uL)	100 (uL)	200 (uL)	Serial No. P-1234	
Accuracy Absolute Error 1.6 (UL)	1.6 (UL)	1.6 (uL)	Number of Measuring Points 3	
(+/-) Relative Error 3.2 (%)	1.6 (%)	0.8 (%)	Number of Measurements	
Repeat- S.D. 0.6 (uL)	0.6 (uL)	0.6 (uL)	Balance Information	
ability C.V. 1.2 (%)	0.6 (%)	0.3 (%)	Manufacturer A&D Campany,Limited	
Measured Values	Measured Values	Measured Values	Regial No. T0100001	
No. (uL) (mg)	(uL) (mg)	(uL) (mg)	Measurement Environment	
1 49.72 49.55	99.48 99.13	199.74 199.04	Humidity 29 (%)	
2 49.74 49.57	99.25 98.90	199.54 198.84	Temperature 22.9 (C)	
3 49.60 49.43	99.11 98.76	199.38 198.68	(Water Temperature)	
4 49.88 49.71	99.22 98.87	199.60 198.90	Barometric Pressure 1017.6 (hPa)	
5 49.74 49.57	99.40 99.05	199.46 198.76	(Z Factor) (uL/mg)	
6 49.72 49.55	99.33 98.98	199.55 198.85	Evaporation Trap 🔽	
8 49.80 49.63	99.42 99.07	199.50 198.80		
9 49.88 49.71	99.28 98.93	199.64 198.94		
10 49.80 49.63	99.38 99.03	199.86 199.16	Test Information	
			Test No. 2/4/2009	
			Operator Mr P	
Clear	Clear	Clear	Test Administration	
Measurement Results	Measurement Results	Measurement Results	Calibration room	$\langle \langle \rangle \rangle$
Number of Measurements 10 (times)	10 (times)	10 (times)		
Mean 49.752 (uL)	99.325 (uL)	199.563 (uL)	Remarks	
Absolute Error -0.248 (uL)	-0.675 (uL)	-0.437 (uL)	OSED DISTINATED WATER	$1 \leq \sum^{n}$
Relative Error -0.496 (%)	-0.675 (%)	-0.218 (%)		
Judgment Pass	Pass	Pass	Start	
S.D. 0.092 (uL)	0.110 (uL)	0.155 (uL)	Print	
ability Undersont Dece	0.111 (%)	0.078 (%)		
	Pass	Pass	All Clear	

Summary

- Use of the leak tester for pipettes Possible to detect leaks using uniform criteria easily and quickly
- Use of the pipette accuracy testers Possible to measure actual volumes dispensed from pipettes

→ Adoption of these testers in the workplace
 Detect pipette failures efficiently as a daily task
 → Improve productivity
 → Make a quality management report at the actual workplace
 → Exercise effective QMS

A&D Won the Kardux Cup for the AD-4212B-PT Pipette Accuracy Tester!

The Kardux Cup is awarded by the International Society of Weighing and Measurement (ISWM) "to recognize a company, group or individual for the most outstanding new technical achievement of the past two years that positively impacts the weighing and measurement industry."

May 2010

